1
|
Jan T, Raheem S, Hanif A, Rydzek G, Peerzada GM, Ariga K, Shang J, Rizvi MA. Adsorptive avidity of Prussian blue polypyrrole nanocomposite for elimination of water contaminants: a case study of malachite green and isoniazid. Phys Chem Chem Phys 2024; 26:16802-16820. [PMID: 38828626 DOI: 10.1039/d4cp01053a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Persistent water contaminants include a variety of substances that evade natural cleaning processes posing severe risks to ecosystems. Their adsorptive elimination is a key approach to safer attenuation. Herein we present the design and development of Prussian blue incorporated polypyrrole (PPY/PB) hybrid nanocomposite as a high-performance adsorbent for the elimination of malachite green (M.G.), isoniazid (INH) and 4-nitrophenol (4-NP) water contaminants. The nanocomposite synthesis was favored by strong dopant-polymer interactions, leading to a PPY/PB material with enhanced electro-active surface area compared to pristine PPY. The structure-activity response of the nanocomposite for the adsorption of target contaminants was unveiled by evaluating its maximum adsorption capacities under environmentally viable conditions. In-depth analysis and optimization of adsorption influencing factors (pH, temperature, and adsorbent dose) were performed. Using equilibrium studies, kinetic model fitting, aided with FTIR analysis, a multi-step mechanism for the adsorption of target contaminants on the nanocomposite was proposed. Furthermore, the PPY/PB nanocomposite also acts as a catalyst, enabling contaminant elimination following a synergistic scheme that was demonstrated using 4-NP contaminant. The synergetic adsorption and catalytic degradation of 4-NP using PPY/PB as adsorbent and catalyst was demonstrated in the presence of NaBH4 as a reducing agent in absence of light. In summary, this work highlights the targeted design of adsorbent, its optimization for adsorptive avidity, and the synergistic role of adsorption trapping in the catalytic degradation of persistent contaminants.
Collapse
Affiliation(s)
- Tabee Jan
- Department of Chemistry, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir-190006, India.
| | - Shabnam Raheem
- Department of Chemistry, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir-190006, India.
| | - Aamir Hanif
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Gaulthier Rydzek
- Institut Charles Gerhardt, UMR 5253, CNRS/ENSCM/UM, ENSCM, Montpellier cedex F-34295, France
| | - G M Peerzada
- Department of Chemistry, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir-190006, India.
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan
| | - Jin Shang
- City University of Hong Kong Shenzhen Research Institute, 8 Yuexing 1st Road, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen, P. R. China
| | - Masood Ahmad Rizvi
- Department of Chemistry, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir-190006, India.
| |
Collapse
|
2
|
He C, Sun Y, Gu Y, Ji H. Enhanced fluoride removal using Mg-Zr binary metal oxide nanoparticles confined in a strong-base anion exchanger. CHEMOSPHERE 2024; 358:141980. [PMID: 38670508 DOI: 10.1016/j.chemosphere.2024.141980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 02/26/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
Generally, the pH of fluorinated groundwater or many industrial wastewater is neutral, while the majority of metal-modified adsorbents can work efficiently only under acidic conditions. In this study, we synthesized a novel hybrid adsorbent, Mg-Zr-D213, by loading nano-Mg/Zr binary metal (hydrogen) oxides in a strong-base anion exchanger, D213, to enhance the adsorption of fluoride from neutral water. Mg-Zr-D213 exhibited a better fluoride-removal capacity in neutral water than monometallic modified resins. Under the interference of competing anions and coexisting organic acids, Mg-Zr-D213 exhibited superior selectivity. The Langmuir model indicated that the fitted maximum sorption capacity of Mg-Zr-D213 was 41.38 mg/g. The results of column experiments showed that the effective treatment volume of Mg-Zr-D213 was 8-16-times higher than that of D213 for both synthetic groundwater and actual industrial wastewater, and that NaOH-NaCl eluent could effectively recover more than 95% of fluoride. Adsorption experiments with Mg/Zr metal (hydrogen) oxide particles and D213 separately demonstrated a synergistic effect between -N+(CH3)3 and Mg/Zr metal (hydrogen) oxide particles. The ligand exchange or metal-ligand interaction of Mg/Zr metal (hydrogen) oxide particles on fluoride was further demonstrated via X-ray photoelectron spectroscopy. Overall, Mg-Zr-D213 has great potential for enhanced fluoride removal in neutral water.
Collapse
Affiliation(s)
- Chengqiang He
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Yue Sun
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, China.
| | - Yingpeng Gu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Hongyu Ji
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
3
|
Teklu T. Oxidative Polymerization of Aniline on the Surface of Sisal Fibers (SFs) as Defluoridation Media for Groundwater. Int J Anal Chem 2024; 2024:6941567. [PMID: 38333412 PMCID: PMC10853025 DOI: 10.1155/2024/6941567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024] Open
Abstract
Chemical modification of sisal fibers via in situ oxidative polymerization of aniline was conducted to examine their defluoridation capacity for fluoride from drinking water. The effects of polyaniline modifications have shown significant changes on the chemical moieties and defluoridation capacity of sisal fibers (SFs). FTIR peaks at 1440 cm-1 and 1560 cm-1 revealed the presence of benzoid and quinoid structures together with sisal fiber (SF). Thermal profiles confirmed the enhancement of thermal stability of polyaniline-modified sisal fibers (PAniMSFs). SEM microstructure also proved the surface roughening of SFs as a result of polyaniline modifications. Optimal batch adsorption parameters (pH, contact time, adsorbent dose, and initial concentration) were found to be 5, 60 min, 1 g, and 10 mg/L, respectively. Adsorption kinetics proved that the removal of fluoride follows pseudo-second-order model (K2 = 0.18 g. (mg·min)-1), while the adsorption isotherm well described by the Langmuir and Freundlich model with an experimental adsorption capacity of 2.49 mg/g. Hence, modifications and improvements are required to reduce the amount of fluoride to a permissible level and enhance the longevity and activity of adsorbent materials.
Collapse
Affiliation(s)
- Tesfamariam Teklu
- Department of Chemistry, Mekelle University, Mekelle, Tigray, Ethiopia
| |
Collapse
|
4
|
Li S, Bian F, Wu X, Sun L, Yang H, Meng X, Qin G. Microstructure Evolution and Its Correlation with Performance in Nitrogen-Containing Porous Carbon Prepared by Polypyrrole Carbonization: Insights from Hybrid Calculations. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3705. [PMID: 35629731 PMCID: PMC9147853 DOI: 10.3390/ma15103705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
The preparation of nitrogen-containing porous carbon (NCPC) materials by controlled carbonization is an exciting topic due to their high surface area and good conductivity for use in the fields of electrochemical energy storage and conversion. However, the poor controllability of amorphous porous carbon prepared by carbonization has always been a tough problem due to the unclear carbonation mechanism, which thus makes it hard to reveal the microstructure-performance relationship. To address this, here, we comprehensively employed reactive molecular dynamics (ReaxFF-MD) simulations and first-principles calculations, together with machine learning technologies, to clarify the carbonation process of polypyrrole, including the deprotonation and formation of pore structures with temperature, as well as the relationship between microstructure, conductance, and pore size. This work constructed ring expressions for PPy thermal conversion at the atomic level. It revealed the structural factors that determine the conductivity and pore size of carbonized products. More significantly, physically interpretable machine learning models were determined to quantitatively express structure factors and performance structure-activity relationships. Our study also confirmed that deprotonation preferentially occurred by desorbing the dihydrogen atom on nitrogen atoms during the carbonization of PPy. This theoretical work clearly reproduces the microstructure evolution of polypyrrole on an atomic scale that is hard to do via experimentation, thus paving a new way to the design and development of nitrogen-containing porous carbon materials with controllable morphology and performance.
Collapse
Affiliation(s)
- Shanshan Li
- College of Sciences, Northeastern University, Shenyang 110819, China; (S.L.); (X.W.)
- Key Laboratory for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; (F.B.); (G.Q.)
| | - Fang Bian
- Key Laboratory for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; (F.B.); (G.Q.)
| | - Xinge Wu
- College of Sciences, Northeastern University, Shenyang 110819, China; (S.L.); (X.W.)
| | - Lele Sun
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China;
| | - Hongwei Yang
- State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Precious Metals New Materials Technology Co., Ltd., Kunming 650106, China;
| | - Xiangying Meng
- College of Sciences, Northeastern University, Shenyang 110819, China; (S.L.); (X.W.)
- The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
| | - Gaowu Qin
- Key Laboratory for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; (F.B.); (G.Q.)
- The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
| |
Collapse
|