1
|
Jhinjharia D, Kaushik AC, Sahi S. A high-throughput structural dynamics approach for identification of potential agonists of FFAR4 for type 2 diabetes mellitus therapy. J Biomol Struct Dyn 2023:1-21. [PMID: 37978906 DOI: 10.1080/07391102.2023.2280707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Diabetes mellitus is a metabolic disorder that persists as a global threat to the world. A G-protein coupled receptor (GPCR), free fatty acid receptor 4 (FFAR4), has emerged as a potential target for type 2 diabetes mellitus (T2DM) and obesity-related disorders. The current study has investigated the FFAR4, deploying 3-dimensional structure modeling, molecular docking, machine learning, and high-throughput virtual screening methods to unravel the receptor's crucial and non-crucial binding site residues. We screened four lakh compounds and shortlisted them based on binding energy, stereochemical considerations, non-bonded interactions, and pharmacokinetic profiling. Out of the screened compounds, four compounds were selected for ligand-bound simulations. The molecular dynamic simulations were carried out for 1µs for native FFAR4 and 500 ns each for complexes of FFAR4 with compound 1, compound 2, compound 3, and compound 4. Our findings showed that in addition to reported binding site residues ARG99, ARG183, and VAL98 in known agonists like TUG-891, the amino acids ARG22, ARG24, THR23, TRP305, and GLU43 were also critical binding site residues. These amino acids impart stability to the FFAR4 complexes and contribute to the stronger binding affinity of the compounds. The study also indicated that aromatic residues like PHE211 are crucial for recognizing the active site's pi-pi and C-C double bonds. Since FFAR4 is a membrane protein, the simulation studies give an insight into the mechanisms of the crucial protein-lipid and lipid-water interactions. The analysis of the molecular dynamics trajectories showed all four compounds as potential hit molecules that can be developed further into potential agonists for T2DM therapy. Amongst the four compounds, compound 4 showed relatively better binding affinity, stronger non-bonded interactions, and a stable complex.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Divya Jhinjharia
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Aman Chandra Kaushik
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shakti Sahi
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| |
Collapse
|
2
|
Wang X, Wei S, Wang M, Xu Y, Hu W, Niu M, Wang S, Lei K, Ji L, Liu R, Ji G. Diphenyl Ether Derivatives as Novel GPR120 Agonists for the Treatment of Type 2 Diabetes Mellitus. Chem Biodivers 2023; 20:e202200814. [PMID: 36471492 DOI: 10.1002/cbdv.202200814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus (DM) is a serious disease affecting human health. Numerous attempts have been made to develop safe and effective new antidiabetic drugs. Recently, a series of G protein-coupled receptors for free fatty acids (FFAs) have been described and characterized, and small molecule agonists and antagonists of these receptors show considerable promise for managing diabetes and related complications. FFA-activated GPR120 could stimulate the release of glucagon-like peptide-1(GLP-1), which can enhance the glucose-dependent secretion of insulin from pancreatic β cells. GPR120 is a promising target for treating type 2 DM (T2DM). Herein we designed and synthesized a series of novel GPR120 agonists based on the structure of TUG-891, which was the first potent and selective GPR120 agonist. Among the designed compounds, 18 f showed excellent GPR120 activation activity and high selectivity for GPR40 in vitro. Compound 18 f dose-dependently improved glucose tolerance in normal mice, and no hypoglycemic side effects were observed at high dose. In addition, compound 18 f increased insulin release and displayed good antidiabetic effect in diet-induced obese mice. Molecular simulations illustrated that compound 18 f could enter the active site of GPR120 and interact with Arg99. Based on these observations, compound 18 f may be a promising lead compound for the design of novel GPR120 agonists to treat T2DM.
Collapse
Affiliation(s)
- Xuekun Wang
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong 252059, China
| | - Shiting Wei
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong 252059, China
| | - Min Wang
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong 252059, China
| | - Yao Xu
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong 252059, China
| | - Weidi Hu
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong 252059, China
| | - Mingyue Niu
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong 252059, China
| | - Shiben Wang
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong 252059, China
| | - Kang Lei
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong 252059, China
| | - Lusha Ji
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong 252059, China
| | - Renmin Liu
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong 252059, China
| | - Guoxia Ji
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong 252059, China.,School of Chemistry and Chemical Engineering, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong 252059, China
| |
Collapse
|
3
|
Wang X, Li X, Wei S, Wang M, Xu Y, Hu W, Gao Z, Liu R, Wang S, Ji G. Discovery of Novel and Selective G-Protein Coupled Receptor 120 (GPR120) Agonists for the Treatment of Type 2 Diabetes Mellitus. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27249018. [PMID: 36558150 PMCID: PMC9781217 DOI: 10.3390/molecules27249018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Diabetes mellitus (DM), a chronic metabolic disorder characterized by high blood glucose, not only poses a serious threat to human life and health, but also places an economic burden on society. Currently available antidiabetic pharmacological agents have some adverse effects, which have stimulated researchers to explore novel antidiabetic agents with different mechanisms of action. G-protein Coupled Receptor 120 (GPR120), also known as free fatty acid receptor 4 (FFAR4), which is activated by medium-chain and long-chain fatty acids, has emerged as an interesting potential target for the treatment of metabolic disorders. Herein, we designed and synthesized a series of novel GPR120 agonists based on the structure of TUG-891, which is susceptible to β-oxidation and loses its GPR120 agonistic activity in vivo. Among the designed compounds, 14d showed excellent agonistic activity and selectivity and could improve glucose tolerance in normal mice in a dose-dependent manner. In addition, the compound 14d displayed good antidiabetic effects in diet-induced obese (DIO) mice and elevated insulin levels. Molecular simulations illustrated that compound 14d could enter the active site of GPR120 and interact with ARG99, which plays an important role in GPR120 activation. Based on these observations, compound 14d may be a promising lead compound deserving of further biological evaluation and structural modifications.
Collapse
Affiliation(s)
- Xuekun Wang
- Correspondence: (X.W.); (S.W.); (G.J.); Tel.: +86-0635-823-9087 (X.W.)
| | | | | | | | | | | | | | | | - Shiben Wang
- Correspondence: (X.W.); (S.W.); (G.J.); Tel.: +86-0635-823-9087 (X.W.)
| | - Guoxia Ji
- Correspondence: (X.W.); (S.W.); (G.J.); Tel.: +86-0635-823-9087 (X.W.)
| |
Collapse
|
4
|
Wang F, Zhang D, Zhang L, Wu X, Deng S, Yuan X. Biodegradation of anionic polyacrylamide by manganese peroxidase: docking, virtual mutation based on affinity, QM/MM calculation and molecular dynamics simulation. Bioprocess Biosyst Eng 2022; 45:1349-1358. [PMID: 35771268 DOI: 10.1007/s00449-022-02750-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022]
Abstract
Manganese peroxidase (Mn P) is capable of effectively degrading anionic polyacrylamide (HPAM). However, the interaction of Mn P with HPAM at molecular level is lacking until now. Here, the HPAM model compounds, HPAM-2, HPAM-3, HPAM-4, and HPAM-5, were selected to reveal their binding mechanisms with Mn P. The results showed that the most suitable substrate for Mn P was HPAM-5, and the main reason for MnP-HPAM-5 with maximal affinity was strong hydrogen bond. LYS96 was the important key residue in all complexes, and the number of key residue was largest in MnP-HPAM-5. The optimal THR27ILE mutant may enhance the affinity of Mn P to HPAM-4. The stability of Mn P binding to HPAM-4 was the optimal. These results were helpful in designing highly efficient Mn P against HPAM to protect the ecological environment.
Collapse
Affiliation(s)
- Fanglue Wang
- School of Material Science and Engineering, Anhui University of Science and Technology, Huainan, 232001, China.
| | - Dongchen Zhang
- School of Material Science and Engineering, Anhui University of Science and Technology, Huainan, 232001, China
| | - Liwen Zhang
- School of Mechanical and Electrical Engineering, Huainan Normal University, Huainan, 232001, China
| | - Xuefeng Wu
- School of Food and Bioengineering, Hefei University of Technology, Hefei, 230009, China
| | - Shengsong Deng
- School of Food and Bioengineering, Hefei University of Technology, Hefei, 230009, China
| | - Xinyu Yuan
- School of Food and Bioengineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|