1
|
Lan J, Wu Y, Chen J, Wang P, Chen H, Huang J, Lu D, Lin C, Ma X, Cao S. Enhancing plant fiber antibacterial and antiviral performance through synergistic action of amino and sulfonic acid groups. Carbohydr Polym 2024; 342:122384. [PMID: 39048195 DOI: 10.1016/j.carbpol.2024.122384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024]
Abstract
As the most abundant renewable resource, cellulose fibers are potential candidates for use in health-protective clothing. Herein, we demonstrate a novel strategy for preparing cellulose fiber with prominent antibacterial and antiviral performance by the synergistic effect of amino groups and sulfonic acid groups. Specifically, guanylated chitosan oligosaccharide (GCOS) and N-sulfopropyl chitosan oligosaccharide (SCOS) were synthesized and chemically grafted onto cellulose fibers (CFs) to endow the fibers with antibacterial and antiviral properties. Moreover, a compounding strategy was applied to make the fibers with simultaneously high antibacterial and antiviral activity, especially in short contact time. The bacteriostatic rate (against S. aureus: 95.81 %, against E. coli: 92.07 %, 1 h) of the compounded fibers improved substantially when a few GCOS-CFs were mixed with SCOS-CFs; especially, it was much higher than both the individual GCOS-CFs and SCOS-CFs. By contrast, the improvement of the antiviral properties was less dramatic; however, even a few SCOS-CFs was mixed, the antiviral properties increased pronouncedly. Although the electrostatic interaction between SCOS and GCOS can make the SCOS-GCOS mixture lose some extent of antibacterial activity, the long chains of cellulose restrain the electrostatic interaction between sulfonic and amino groups, leading to their synergistic action and eventually superior antibacterial and antiviral effects.
Collapse
Affiliation(s)
- Jinxin Lan
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yao Wu
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jiazhen Chen
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Peng Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Hubei, Wuhan 430068, China
| | - Hui Chen
- Fujian Fynex Textile Science and Technology Co. Ltd., Quanzhou, Fujian 362200, China
| | - Jinfeng Huang
- Fujian Fynex Textile Science and Technology Co. Ltd., Quanzhou, Fujian 362200, China
| | - Dongdong Lu
- Key Lab for Sport Shoes Upper Materials, Fujian Huafeng New Material Co. Ltd., Putian 351164, China
| | - Changmei Lin
- College of Environmental and Biological Engineering, Putian University, Putian, Fujian 351100, China
| | - Xiaojuan Ma
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China..
| | - Shilin Cao
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China..
| |
Collapse
|
2
|
Dorchei F, Heydari A, Kroneková Z, Kronek J, Pelach M, Cseriová Z, Chorvát D, Zúñiga-Navarrete F, Rios PD, McGarrigle J, Ghani S, Isa D, Joshi I, Vasuthas K, Rokstad AMA, Oberholzer J, Raus V, Lacík I. Postmodification with Polycations Enhances Key Properties of Alginate-Based Multicomponent Microcapsules. Biomacromolecules 2024; 25:4118-4138. [PMID: 38857534 DOI: 10.1021/acs.biomac.4c00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Postmodification of alginate-based microspheres with polyelectrolytes (PEs) is commonly used in the cell encapsulation field to control microsphere stability and permeability. However, little is known about how different applied PEs shape the microsphere morphology and properties, particularly in vivo. Here, we addressed this question using model multicomponent alginate-based microcapsules postmodified with PEs of different charge and structure. We found that the postmodification can enhance or impair the mechanical resistance and biocompatibility of microcapsules implanted into a mouse model, with polycations surprisingly providing the best results. Confocal Raman microscopy and confocal laser scanning microscopy (CLSM) analyses revealed stable interpolyelectrolyte complex layers within the parent microcapsule, hindering the access of higher molar weight PEs into the microcapsule core. All microcapsules showed negative surface zeta potential, indicating that the postmodification PEs get hidden within the microcapsule membrane, which agrees with CLSM data. Human whole blood assay revealed complex behavior of microcapsules regarding their inflammatory and coagulation potential. Importantly, most of the postmodification PEs, including polycations, were found to be benign toward the encapsulated model cells.
Collapse
Affiliation(s)
- Faeze Dorchei
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Abolfazl Heydari
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešt'any, Slovakia
| | - Zuzana Kroneková
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešt'any, Slovakia
| | - Juraj Kronek
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešt'any, Slovakia
| | - Michal Pelach
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Zuzana Cseriová
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Dušan Chorvát
- Department of Biophotonics, International Laser Centre, Slovak Centre of Scientific and Technical Information, Ilkovičova 3, 841 04 Bratislava, Slovakia
| | - Fernando Zúñiga-Navarrete
- Department of Proteomics, Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - Peter D Rios
- CellTrans, Inc., 2201 W. Campbell Park Dr., Chicago, Illinois 60612, United States
| | - James McGarrigle
- CellTrans, Inc., 2201 W. Campbell Park Dr., Chicago, Illinois 60612, United States
| | - Sofia Ghani
- CellTrans, Inc., 2201 W. Campbell Park Dr., Chicago, Illinois 60612, United States
| | - Douglas Isa
- CellTrans, Inc., 2201 W. Campbell Park Dr., Chicago, Illinois 60612, United States
| | - Ira Joshi
- CellTrans, Inc., 2201 W. Campbell Park Dr., Chicago, Illinois 60612, United States
| | - Kalaiyarasi Vasuthas
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Prinsesse Kristinas gt.1, NO-7491 Trondheim, Norway
| | - Anne Mari A Rokstad
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Prinsesse Kristinas gt.1, NO-7491 Trondheim, Norway
| | - José Oberholzer
- CellTrans, Inc., 2201 W. Campbell Park Dr., Chicago, Illinois 60612, United States
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Vladimír Raus
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Igor Lacík
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešt'any, Slovakia
| |
Collapse
|
3
|
Lai C, Lin S, Liu W, Jin Y. Research Progress of Chitosan-based Multifunctional Nanoparticles in Cancer Targeted Therapy. Curr Med Chem 2024; 31:3074-3092. [PMID: 37062062 DOI: 10.2174/0929867330666230416153352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 04/17/2023]
Abstract
Conventional tumor therapeutic modalities, such as radiotherapy, chemotherapy, and surgery, involve low tumor inhibition efficiency, non-targeted drug delivery, and side effects. The development of novel and practical nano-drug delivery systems (DDSs) for targeted tumor therapy has become particularly important. Among various bioactive nanoparticles, chitosan is considered a suitable candidate for drug delivery due to its nontoxicity, good biocompatibility, and biodegradability. The amino and hydroxyl groups of chitosan endow it with the diverse function of chemical modification, thereby improving its physical and biological properties to meet the requirements of advanced biomedical applications. Therefore, it is necessary to review the property and applications of chitosan- based materials in biomedicine. In this review, the characteristics of chitosan related to its applications are first introduced, and then the preparation and modification of chitosan-based nanoparticles, including the function tailoring of chitosan-modified nanoparticles, are demonstrated and discussed. Finally, the opportunities and challenges of chitosan- based nanomaterials in this emerging field are proposed from the perspective of the rational and systematic design for the biomedicine field.
Collapse
Affiliation(s)
- Chunmei Lai
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Simin Lin
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Wei Liu
- Fujian College Association Instrumental Analysis Center of Fuzhou University, Fuzhou University, Fuzhou, 350108, China
| | - Yanqiao Jin
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
4
|
Nezhad-Mokhtari P, Kazeminava F, Abdollahi B, Gholizadeh P, Heydari A, Elmi F, Abbaszadeh M, Kafil HS. Matricaria chamomilla essential oil-loaded hybrid electrospun nanofibers based on polycaprolactone/sulfonated chitosan/ZIF-8 nanoparticles for wound healing acceleration. Int J Biol Macromol 2023; 247:125718. [PMID: 37419259 DOI: 10.1016/j.ijbiomac.2023.125718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Recently, developing antibacterial wound dressings based on biomaterials display good biocompatibility and the potential to accelerate wound healing. For this aim, we prepared eco-friendly and biodegradable nanofibers (NFs) based on N-(3-sulfopropyl)chitosan/ poly (ε-caprolactone) incorporated by zeolite imidazolate framework-8 nanoparticles (ZIF-8 NPs) and chamomile essential oil (MCEO) via the electrospinning technique for their efficacy as wound dressing scaffolds. Fabricated NFs were characterized and studied for their structural, morphological, mechanical, hydrophilic, and thermal stability properties. The results of scanning electron microscopy (SEM) revealed that adding the ZIF-8 NPs/ MCEO, very slightly influenced the average diameter of NFs (PCL/SPCS (90:10) with 90 ± 32 nm). The developed uniform MCEO-loaded ZIF-8/PCL/SPCS NFs displayed better cytocompatibility, proliferation, and physicochemical properties (e.g. thermal stability and mechanical properties) than neat NFs. The results of cytocompatibility, DAPI (4',6-diamidino-2-phenylindole) staining study, and SEM micrographs demonstrated that formulated NFs had promising adhesion and proliferation against normal human foreskin fibroblasts-2 (HFF-2 cell line). The prepared NFs revealed excellent antibacterial activity against both Staphylococcus aureus and Escherichia coli with inhibition of 32.3 mm and 31.2 mm, respectively. Accordingly, the newly developed antibacterial NFs hold great potential as effective biomaterials for use as an active platform in wound healing applications.
Collapse
Affiliation(s)
- Parinaz Nezhad-Mokhtari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fahimeh Kazeminava
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Abdollahi
- Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Researcher and Quality Control Expert in Water and Wastewater Company of East Azerbaijan province, Tabriz, Iran
| | - Pourya Gholizadeh
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Heydari
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia; National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4782/4, 921 12 Piešťany, Slovakia
| | - Faranak Elmi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Abbaszadeh
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Aranaz I, Navarro-García F, Morri M, Acosta N, Casettari L, Heras A. Evaluation of chitosan salt properties in the production of AgNPs materials with antibacterial activity. Int J Biol Macromol 2023; 235:123849. [PMID: 36858087 DOI: 10.1016/j.ijbiomac.2023.123849] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/12/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023]
Abstract
In this study, water-soluble chitosan salts (chitosan amine sulfopropyl salts) were prepared from chitosan samples with different molecular weights and deacetylation degrees. These soluble-in-water polymer salts allowed us to produce, in an eco-friendly and facile method, silver nanoparticles (AgNPs) with better control on size and polydispersity, even at large silver concentrations than their corresponding chitosan sample. Chitosan salt-based materials (films and scaffolds) were analyzed in terms of antibacterial properties against Staphylococcus aureus ATCC23915 or Pseudomonas aeruginosa ATCC 27853. 3D scaffolds enhanced the effect of the chitosan-AgNPs combination compared to the equivalent films.
Collapse
Affiliation(s)
- I Aranaz
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII, num. 1, E-28040 Madrid, Spain.
| | - F Navarro-García
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - M Morri
- Department of Biomolecular Sciences, School of Pharmacy, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy
| | - N Acosta
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII, num. 1, E-28040 Madrid, Spain
| | - L Casettari
- Department of Biomolecular Sciences, School of Pharmacy, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy
| | - A Heras
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII, num. 1, E-28040 Madrid, Spain
| |
Collapse
|
6
|
Heydari A, Hosseini M, Darroudi M, Behzadi M, Hronský V, Sučik G, Rouh H, Sheibani H. Toward efficient functionalization of polystyrene backbone through ketene chemistry: Synthesis, characterization, and
DFT
study. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Abolfazl Heydari
- Polymer Institute of the Slovak Academy of Sciences Slovakia
- Department of Chemistry Shahid Bahonar University of Kerman Kerman Iran
| | - Maryam Hosseini
- Faculty of Physics Shahid Bahonar University of Kerman Kerman Iran
| | - Mahdieh Darroudi
- Department of Medical Biotechnology and Nanotechnology, School of Science Mashhad University of Medical Science Mashhad Iran
- Department of Energy Science and Technology, Faculty of Science Turkish‐Germen University Istanbul Turkey
| | - Masoumeh Behzadi
- Laboratoire de Chimie et Systémique Organométalliques Institut de Chimie de Strasbourg (UMR 7177) CNRS/Université de Strasbourg Strasbourg France
- Department of Chemical and Petroleum Engineering Sharif University of Technology Tehran Iran
| | - Viktor Hronský
- Department of Physics Technical University of Košice Košice Slovakia
| | - Gabriel Sučik
- Faculty of Materials, Metallurgy and Recycling Technical University of Košice Košice Slovakia
| | - Hossein Rouh
- Department of Chemistry and Biochemistry Texas Tech University Lubbock Texas USA
| | - Hassan Sheibani
- Department of Chemistry Shahid Bahonar University of Kerman Kerman Iran
| |
Collapse
|