1
|
Purohit V, Steussy CN, Rosales AR, Critchelow CJ, Schmidt T, Helquist P, Wiest O, Mesecar A, Cohen AE, Stauffacher CV. pH-dependent reaction triggering in PmHMGR crystals for time-resolved crystallography. Biophys J 2024; 123:622-637. [PMID: 38327055 PMCID: PMC10938121 DOI: 10.1016/j.bpj.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/22/2023] [Accepted: 02/02/2024] [Indexed: 02/09/2024] Open
Abstract
Serial crystallography and time-resolved data collection can readily be employed to investigate the catalytic mechanism of Pseudomonas mevalonii 3-hydroxy-3-methylglutaryl (HMG)-coenzyme-A (CoA) reductase (PmHMGR) by changing the environmental conditions in the crystal and so manipulating the reaction rate. This enzyme uses a complex mechanism to convert mevalonate to HMG-CoA using the co-substrate CoA and cofactor NAD+. The multi-step reaction mechanism involves an exchange of bound NAD+ and large conformational changes by a 50-residue subdomain. The enzymatic reaction can be run in both forward and reverse directions in solution and is catalytically active in the crystal for multiple reaction steps. Initially, the enzyme was found to be inactive in the crystal starting with bound mevalonate, CoA, and NAD+. To observe the reaction from this direction, we examined the effects of crystallization buffer constituents and pH on enzyme turnover, discovering a strong inhibition in the crystallization buffer and a controllable increase in enzyme turnover as a function of pH. The inhibition is dependent on ionic concentration of the crystallization precipitant ammonium sulfate but independent of its ionic composition. Crystallographic studies show that the observed inhibition only affects the oxidation of mevalonate but not the subsequent reactions of the intermediate mevaldehyde. Calculations of the pKa values for the enzyme active site residues suggest that the effect of pH on turnover is due to the changing protonation state of His381. We have now exploited the changes in ionic inhibition in combination with the pH-dependent increase in turnover as a novel approach for triggering the PmHMGR reaction in crystals and capturing information about its intermediate states along the reaction pathway.
Collapse
Affiliation(s)
- Vatsal Purohit
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - Calvin N Steussy
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - Anthony R Rosales
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana
| | | | - Tim Schmidt
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - Paul Helquist
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana
| | - Olaf Wiest
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana
| | - Andrew Mesecar
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana; Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana; Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | - Aina E Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California
| | - Cynthia V Stauffacher
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana; Purdue Institute of Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, Indiana; Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana.
| |
Collapse
|
2
|
Patel HN, Haines BE, Stauffacher CV, Helquist P, Wiest O. Computational Study of Base-Catalyzed Thiohemiacetal Decomposition in Pseudomonas mevalonii HMG-CoA Reductase. J Phys Chem B 2023; 127:4931-4938. [PMID: 37219997 PMCID: PMC11607680 DOI: 10.1021/acs.jpcb.2c08969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Thiohemiacetals are key intermediates in the active sites of many enzymes catalyzing a variety of reactions. In the case of Pseudomonas mevalonii 3-hydroxy-3-methylglutaryl coenzyme A reductase (PmHMGR), this intermediate connects the two hydride transfer steps where a thiohemiacetal is the product of the first hydride transfer and its breakdown forms the substrate of the second one, serving as the intermediate during cofactor exchange. Despite the many examples of thiohemiacetals in a variety of enzymatic reactions, there are few studies that detail their reactivity. Here, we present computational studies on the decomposition of the thiohemiacetal intermediate in PmHMGR using both QM-cluster and QM/MM models. This reaction mechanism involves a proton transfer from the substrate hydroxyl to an anionic Glu83 followed by a C-S bond elongation stabilized by a cationic His381. The reaction provides insight into the varying roles of the residues in the active site that favor this multistep mechanism.
Collapse
Affiliation(s)
- Himani N. Patel
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Brandon E. Haines
- Department of Chemistry, Westmont College, Santa Barbara, California 93108, United States
| | - Cynthia V. Stauffacher
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Paul Helquist
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Olaf Wiest
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
3
|
Quinn TR, Patel HN, Koh KH, Haines BE, Norrby PO, Helquist P, Wiest O. Automated fitting of transition state force fields for biomolecular simulations. PLoS One 2022; 17:e0264960. [PMID: 35271647 PMCID: PMC8912266 DOI: 10.1371/journal.pone.0264960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/22/2022] [Indexed: 12/29/2022] Open
Abstract
The generation of surrogate potential energy functions (PEF) that are orders of magnitude faster to compute but as accurate as the underlying training data from high-level electronic structure methods is one of the most promising applications of fitting procedures in chemistry. In previous work, we have shown that transition state force fields (TSFFs), fitted to the functional form of MM3* force fields using the quantum guided molecular mechanics (Q2MM) method, provide an accurate description of transition states that can be used for stereoselectivity predictions of small molecule reactions. Here, we demonstrate the applicability of the method for fit TSFFs to the well-established Amber force field, which could be used for molecular dynamics studies of enzyme reaction. As a case study, the fitting of a TSFF to the second hydride transfer in Pseudomonas mevalonii 3-hydroxy-3-methylglutaryl coenzyme A reductase (PmHMGR) is used. The differences and similarities to fitting of small molecule TSFFs are discussed.
Collapse
Affiliation(s)
- Taylor R. Quinn
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
- Early TDE Discovery, Early Oncology, Oncology R&D, AstraZeneca, Boston, Massachusetts, United States of America
| | - Himani N. Patel
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Kevin H. Koh
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Brandon E. Haines
- Department of Chemistry, Westmont College, Santa Barbara, California, United States of America
| | - Per-Ola Norrby
- Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca Gothenburg, Mölndal, Sweden
| | - Paul Helquist
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Olaf Wiest
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
- Lab of Computational Chemistry and Drug Design, School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen, China
- * E-mail:
| |
Collapse
|
4
|
Modeling Catalysis in Allosteric Enzymes: Capturing Conformational Consequences. Top Catal 2021; 65:165-186. [DOI: 10.1007/s11244-021-01521-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Bellussi FM, Roscioni OM, Ricci M, Fasano M. Anisotropic Electrostatic Interactions in Coarse-Grained Water Models to Enhance the Accuracy and Speed-Up Factor of Mesoscopic Simulations. J Phys Chem B 2021; 125:12020-12027. [PMID: 34704761 PMCID: PMC8573754 DOI: 10.1021/acs.jpcb.1c07642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Water models with
realistic physical–chemical properties
are essential to study a variety of biomedical processes or engineering
technologies involving molecules or nanomaterials. Atomistic models
of water are constrained by the feasible computational capacity, but
calibrated coarse-grained (CG) ones can go beyond these limits. Here,
we compare three popular atomistic water models with their corresponding
CG model built using finite-size particles such as ellipsoids. Differently
from previous approaches, short-range interactions are accounted for
with the generalized Gay–Berne potential, while electrostatic
and long-range interactions are computed from virtual charges inside
the ellipsoids. Such an approach leads to a quantitative agreement
between the original atomistic models and their CG counterparts. Results
show that a timestep of up to 10 fs can be achieved to integrate the
equations of motion without significant degradation of the physical
observables extracted from the computed trajectories, thus unlocking
a significant acceleration of water-based mesoscopic simulations at
a given accuracy.
Collapse
Affiliation(s)
| | | | | | - Matteo Fasano
- Department of Energy, Politecnico di Torino, Torino 10129, Italy
| |
Collapse
|