1
|
Yang H, Li G, Liu Q, Cheng H, Wang X, Cheng J, Jiang G, Zhang F, Zhang Z, Hao Z. Tailoring the Electronic Metal-Support Interactions in Supported Silver Catalysts through Al modification for Efficient Ethylene Epoxidation. Angew Chem Int Ed Engl 2024; 63:e202400627. [PMID: 38390644 DOI: 10.1002/anie.202400627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/11/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Metal-modified catalysts have attracted extraordinary research attention in heterogeneous catalysis due to their enhanced geometric and electronic structures and outstanding catalytic performances. Silver (Ag) possesses necessary active sites for ethylene epoxidation, but the catalyst activity is usually sacrificed to obtain high selectivity towards ethylene oxide (EO). Herein, we report that using Al can help in tailoring the unoccupied 3d state of Ag on the MnO2 support through strong electronic metal-support interactions (EMSIs), overcoming the activity-selectivity trade-off for ethylene epoxidation and resulting in a very high ethylene conversion rate (~100 %) with 90 % selectivity for EO under mild conditions (170 °C and atmospheric pressure). Structural characterization and theoretical calculations revealed that the EMSIs obtained by the Al modification tailor the unoccupied 3d state of Ag, modulating the adsorption of ethylene (C2H4) and oxygen (O2) and facilitating EO desorption, resulting in high C2H4 conversion. Meanwhile, the increased number of positively charge Ag+ lowers the energy barrier for C2H4(ads) oxidation to produce oxametallacycle (OMC), inducing the unexpectedly high EO selectivity. Such an extraordinary electronic promotion provides new promising pathways for designing advanced metal catalysts with high activity and selectivity in selective oxidation reactions.
Collapse
Affiliation(s)
- Hongling Yang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of the Chinese Academy of Sciences, Beijing, 101408, China
- Beijing Key Laboratory for VOCs Pollution Prevention and Treatment Technology and Application of Urban Air, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
| | - Ganggang Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of the Chinese Academy of Sciences, Beijing, 101408, China
| | - Qinggang Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Haixia Cheng
- Material Digital R&D Center, China Iron & Steel Research Institute Group, Beijing, 100081, China
| | | | - Jie Cheng
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of the Chinese Academy of Sciences, Beijing, 101408, China
| | - Guoxia Jiang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of the Chinese Academy of Sciences, Beijing, 101408, China
| | - Fenglian Zhang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of the Chinese Academy of Sciences, Beijing, 101408, China
| | - Zhongshen Zhang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of the Chinese Academy of Sciences, Beijing, 101408, China
| | - Zhengping Hao
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of the Chinese Academy of Sciences, Beijing, 101408, China
| |
Collapse
|
2
|
Yang H, Ren B, Huang Y, Zhang Z, Hu W, Liu M, Zhao H, Jiang G, Hao Z. Volatile organic compounds (VOCs) emissions from internal floating-roof tank in oil depots in Beijing: Influencing factors and emission reduction strategies analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170222. [PMID: 38244630 DOI: 10.1016/j.scitotenv.2024.170222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/30/2023] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
The internal floating-roof tank is the main type of storage tank for refined oil products. The volatile organic compounds (VOCs) emission from the internal floating-roof tank plays a dominant role in the unorganized emission source of the oil depot. In this study, we selected six typical oil depots in Beijing to investigate VOC emission characteristics from the tank top vent hole using infrared imaging technology and flame ionization detector (FID). The results reveal that infrared thermal imager is efficient in quickly identifying the emission level of the tank discharge point. The ambient temperature and wind speed have a direct effect on sealing loss, the turnover can greatly influence the wall hanging loss, and the concentration of VOCs emitted from the tank top vent hole is negatively correlated with liquid height. Furthermore, the influence of accessories type of the internal floating-roof tank on the concentration of VOCs emission from the top vent hole is also studied when other parameters remain unchanged, and find the floating deck type and sealing mode have a significant influence on their VOCs emissions, of which the combination of pontoon type floating deck and secondary seal are effective in controlling the concentration of VOCs emitted from the tank top vent hole. Finally, based on our experimental results, several feasible emission reduction strategies are proposed in terms of source prevention and process control in order to achieve the fine management of the whole process. This paper provides important technical support and policy thoughts for VOCs emission control during oil storage.
Collapse
Affiliation(s)
- Hongling Yang
- Beijing Key Laboratory for VOCs Pollution Prevention and Treatment Technology and Application of Urban Air, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
| | - Biqi Ren
- Beijing Key Laboratory for VOCs Pollution Prevention and Treatment Technology and Application of Urban Air, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
| | - Yuhu Huang
- Beijing Key Laboratory for VOCs Pollution Prevention and Treatment Technology and Application of Urban Air, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China; School of Environmental Science and Engineering, Tianjin University, Tianjin 300027, China.
| | - Zhongshen Zhang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Wei Hu
- Beijing Key Laboratory for VOCs Pollution Prevention and Treatment Technology and Application of Urban Air, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
| | - Mingyu Liu
- Beijing Vehicle Emission Management Center, Beijing 100176, China
| | - Huan Zhao
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Guoxia Jiang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Zhengping Hao
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
3
|
Li R, Liu C, Fan Y, Fu Q, Bao X. Metal-oxide interactions modulating the activity of active oxygen species on atomically dispersed silver catalysts. Chem Commun (Camb) 2023; 59:3854-3857. [PMID: 36911985 DOI: 10.1039/d3cc00617d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The activity of active oxygen species on supported Ag atoms can be effectively modulated by metal-support interactions using different oxide supports. The strong interaction between Ag and Al2O3 with more electrons transferred from Ag to Al2O3 leads to the formation of more Ag-O2- (superoxide) species, responsible for the selective oxidation of ethylene to ethylene oxide. The relatively weak interaction between Ag and SiO2 induces the generation of Ag-O (atomic oxygen) and Ag-O22- (peroxide) species, which are more active for complete oxidation of CO and ethylene to CO2. This work is of significance for deep understanding of active surface species in atomically dispersed metal catalysts.
Collapse
Affiliation(s)
- Rongtan Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Conghui Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China.
| | - Yamei Fan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China.
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China.
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China.
| |
Collapse
|
4
|
Fang J, Chen Q, Li Z, Mao J, Li Y. The synthesis of single-atom catalysts for heterogeneous catalysis. Chem Commun (Camb) 2023; 59:2854-2868. [PMID: 36752217 DOI: 10.1039/d2cc06406e] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Heterogeneous catalysis is an important class of reactions in industrial production, especially in green chemical synthesis, and environmental and organic catalysis. Single-atom catalysts (SACs) have emerged as promising candidates for heterogeneous catalysis, due to their outstanding catalytic activity, high selectivity, and maximum atomic utilization efficiency. The high specific surface energy of SACs, however, results in the migration and aggregation of isolated atoms under typical reaction conditions. The controllable preparation of highly efficient and stable SACs has been a serious challenge for applications. Herein, we summarize the recent progress in the precise synthesis of SACs and their different heterogeneous catalyses, especially involving the oxidation and reduction reactions of small organic molecules. At the end of this review, we also introduce the challenges confronted by single-atom materials in heterogeneous catalysis. This review aims to promote the generation of novel high-efficiency SACs by providing an in-depth and comprehensive understanding of the current development in this research field.
Collapse
Affiliation(s)
- Jiaojiao Fang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Qingqing Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Zhi Li
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Yadong Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China. .,Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China. .,College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
5
|
Yang H, Wang X, Liu Q, Huang A, Zhang X, Yu Y, Zhuang Z, Li G, Li Y, Peng Q, Chen X, Xiao H, Chen C. Heterogeneous Iridium Single-Atom Molecular-like Catalysis for Epoxidation of Ethylene. J Am Chem Soc 2023; 145:6658-6670. [PMID: 36802612 DOI: 10.1021/jacs.2c11380] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Developing efficient and simple catalysts to reveal the key scientific issues in the epoxidation of ethylene has been a long-standing goal for chemists, whereas a heterogenized molecular-like catalyst is desirable which combines the best aspects of homogeneous and heterogeneous catalysts. Single-atom catalysts can effectively mimic molecular catalysts on account of their well-defined atomic structures and coordination environments. Herein, we report a strategy for selective epoxidation of ethylene, which exploits a heterogeneous catalyst comprising iridium single atoms to interact with the reactant molecules that act analogously to ligands, resulting in molecular-like catalysis. This catalytic protocol features a near-unity selectivity (99%) to produce value-added ethylene oxide. We investigated the origin of the improvement of selectivity for ethylene oxide for this iridium single-atom catalyst and attributed the improvement to the π-coordination between the iridium metal center with a higher oxidation state and ethylene or molecular oxygen. The molecular oxygen adsorbed on the iridium single-atom site not only helps to strengthen the adsorption of ethylene molecule by iridium but also alters its electronic structure, allowing iridium to donate electrons into the double bond π* orbitals of ethylene. This catalytic strategy facilitates the formation of five-membered oxametallacycle intermediates, leading to the exceptionally high selectivity for ethylene oxide. Our model of single-atom catalysts featuring remarkable molecular-like catalysis can be utilized as an effective strategy for inhibiting the overoxidation of the desired product. Implementing the concepts of homogeneous catalysis into heterogeneous catalysis would provide new perspectives for the design of new advanced catalysts.
Collapse
Affiliation(s)
- Hongling Yang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China.,Beijing Key Laboratory for VOCs Pollution Prevention and Treatment Technology and Application of Urban Air, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
| | | | - Qinggang Liu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Aijian Huang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xun Zhang
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Yi Yu
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Zewen Zhuang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China.,College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Ganggang Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yang Li
- Beijing Single-Atom Catalysis Technology Co., Ltd., Beijing 100094, China
| | - Qing Peng
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xin Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Hai Xiao
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chen Chen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Shi J, Liu Q, Liu R, Zhao D, Xu X, Cui J, Ding H. Low-temperature degradation of toluene over Ag-MnO x-ACF composite catalyst. ENVIRONMENTAL TECHNOLOGY 2023; 44:647-658. [PMID: 34516339 DOI: 10.1080/09593330.2021.1980830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Volatile organic compounds (VOCs) have caused a serious threat to the atmosphere and human health. Therefore, it is of great significance to exploit effective catalytic materials for the safe and effective catalytic elimination of VOCs. Herein, Ag-MnOx-ACF composite catalysts were constructed via a two-step impregnation strategy and used for catalytic toluene degradation. A remarkable low-temperature catalytic activity (T100 = 50℃), excellent stability, as well as CO2 selectivity (80%) were achieved over the Ag-MnOx-ACF catalyst. A series of characterizations indicated that the unique manganese defects structure of birnessite phase manganese oxide played an essential role for toluene oxidation, which was conducive to generating surface adsorbed oxygen. The higher ratio of Mn3+/Mn4+, abundant surface adsorbed oxygen and highly dispersed Ag species were determined to significantly facilitate toluene degradation. The mechanism of efficient degradation of toluene at low temperature was proposed. O3 and H2O molecules were activated via surface hydroxyl and Mn defects on Ag-MnOx-ACF to produce sufficient •OH, enhancing the degradation performance of toluene. We provide a new idea for the catalytic oxidation of benzene VOCs at low even room temperatures.
Collapse
Affiliation(s)
- Jiahui Shi
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Qiang Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Rui Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Dan Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Ximeng Xu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Jiahao Cui
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Hui Ding
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| |
Collapse
|
7
|
Volcano-type relationship between oxidation states and catalytic activity of single-atom catalysts towards hydrogen evolution. Nat Commun 2022; 13:5843. [PMID: 36195616 PMCID: PMC9532448 DOI: 10.1038/s41467-022-33589-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022] Open
Abstract
To date, the effect of oxidation state on activity remains controversial in whether higher or lower oxidation states benefit the enhancement of catalytic activity. Herein, we discover a volcanic relationship between oxidation state and hydrogen evolution reaction activity based on Os single-atom catalysts. Firstly, a series of Os SACs with oxidation states ranging from + 0.9 to + 2.9 are synthesized via modifying the coordination environments, including Os-N3S1, Os-N4, Os-S6, Os-C3, and Os-C4S2. A volcano-type relation between oxidation states and hydrogen evolution activity emerge with a summit at a moderate experimental oxidation state of + 1.3 (Os-N3S1). Mechanism studies illustrate that with increasing oxidation states, the adsorption of H atoms on Os is strengthened due to increased energy level and decreased occupancy of anti-bonding states of Os-H bond until the anti-bonding states become empty. Further increasing the oxidation states weakens hydrogen adsorption because of the decreased occupancy of Os-H bonding states. In this work, we emphasize the essential role of oxidation state in manipulating activity, which offers insightful guidance for the rational design of single-atom catalysts. While single atom catalysis offers high efficiency for materials use, different possible atomic configurations yield differing activities. Here, authors modulate single-atom Os coordinations to show a volcano relationship between oxidation state and H2 evolution electrocatalytic activities.
Collapse
|
8
|
Nie Z, Yang T, Su M, Luo WP, Liu Q, Guo CC. One‐Step Synthesis of Arylacetaldehydes from Aryl aldehydes or Diaryl ketones via One‐Carbon Extension by Using the System of DMSO/KOH/Zinc. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Li X, Shao X, Wang Z, Ma J, He H. Regulating the chemical state of silver via surface hydroxyl groups to enhance ozone decomposition performance of Ag/Fe2O3 catalyst. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Catalyst-Controlled Selectivity in Oxidation of Olefins: Highly Facile Success to Functionalized Aldehydes and Ketones. Catal Letters 2022. [DOI: 10.1007/s10562-021-03903-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
11
|
Yang H, Wu Y, Zhuang Z, Li Y, Chen C. Factors Affecting the Catalytic Performance of Nano‐catalysts. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Hongling Yang
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yue Wu
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Zewen Zhuang
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yang Li
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Chen Chen
- Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
12
|
Li X, He G, Ma J, Shao X, Chen Y, He H. Boosting the Dispersity of Metallic Ag Nanoparticles and Ozone Decomposition Performance of Ag-Mn Catalysts via Manganese Vacancy-Dependent Metal-Support Interactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16143-16152. [PMID: 34751029 DOI: 10.1021/acs.est.1c05765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ozone (O3) removal has important implications for environmental protection and human health, and Ag-Mn catalysts have shown promising O3 decomposition. Catalysts with Ag supported on porous cube-like α-Mn2O3 (Ag/Mn-C) with high utilization of Ag were prepared by the impregnation method and showed excellent O3 decomposition activity. Physicochemical characterizations demonstrated that metallic Ag nanoparticles (Agn0) were mainly anchored on manganese vacancies, forming Ag-O-Mn bonds between Agn0 and α-Mn2O3-C. The abundant manganese vacancies of α-Mn2O3-C can lead to Agn0 with a smaller particle size and more uniform dispersion, thereby resulting in markedly enhanced O3 decomposition performance compared to Agn0 with a large particle size and uneven distribution on rod-like α-Mn2O3 (Ag/Mn-R). Under a relative humidity of 65% and a space velocity of 1,110,000 h-1, the conversion of 40 ppm O3 over the 2%Ag/Mn-C catalyst within 6 h (98%) at 30 °C was more than twice as high as that of the 2%Ag/Mn-R catalyst (42%). The study provides guidance for the design of highly efficient Ag-based catalysts and the understanding of the microstructure of supported catalysts.
Collapse
Affiliation(s)
- Xiaotong Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangzhi He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinzhu Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xufei Shao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yingfa Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|