1
|
Turman NC, Smith KL, Crawford ET, Robins JG, Weber KM, Liu S, Johnson JS. Rhodium-Catalyzed Asymmetric Arylation-Induced Glycolate Aldol Additions of Silyl Glyoxylates. Angew Chem Int Ed Engl 2023; 62:e202311554. [PMID: 37642944 PMCID: PMC10593381 DOI: 10.1002/anie.202311554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
(Diene)Rh(I) complexes catalyze the stereoselective three-component coupling of silyl glyoxylates, arylboronic acids, and aldehydes to give glycolate aldol products. The participation of Rh-alkoxides in the requisite Brook rearrangement was established through two component Rh-catalyzed couplings of silyl glyoxylates with ArB(OH)2 to give silyl-protected mandelate derivatives. The intermediacy of a chiral Rh-enolate was inferred through enantioselective protonation using a chiral Rh-catalyst. Diastereoselective three-component couplings with aldehydes as terminating electrophiles to give racemic products were best achieved with a bulky aryl ester on the silyl glyoxylate reagent. Optimal enantioselective couplings were carried out with the tert-butyl ester variant using an anisole-derived enantiopure tricyclo[3.2.2.02,4 ]nonadiene ligand.
Collapse
Affiliation(s)
- Nolan C. Turman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290 (USA)
| | - Kendrick L. Smith
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290 (USA)
| | - Evan T. Crawford
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290 (USA)
| | - Jacob G. Robins
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290 (USA)
| | - Kathryn M. Weber
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290 (USA)
| | - Shubin Liu
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290 (USA)
| | - Jeffrey S. Johnson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290 (USA)
| |
Collapse
|
2
|
Sang X, Mo Y, Li S, Liu X, Cao W, Feng X. Bimetallic tandem catalysis-enabled enantioselective cycloisomerization/carbonyl-ene reaction for construction of 5-oxazoylmethyl α-silyl alcohol. Chem Sci 2023; 14:8315-8320. [PMID: 37564412 PMCID: PMC10411629 DOI: 10.1039/d3sc01048a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
A bimetallic tandem catalysis-enabled enantioselective cycloisomerization/carbonyl-ene reaction was developed. The reaction proceeded well with a broad range of N-propargylamides and acylsilanes, affording the target chiral 5-oxazoylmethyl α-silyl alcohols in up to 95% yield and 99% ee under mild conditions. Importantly, this facile protocol was available for the late-stage modification of several bioactive molecules. Based on the mechanistic study and control experiments, a possible catalytic cycle and transition state are proposed to elucidate the reaction process and enantioinduction.
Collapse
Affiliation(s)
- Xinpeng Sang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Yuhao Mo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Shiya Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Weidi Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| |
Collapse
|
3
|
Mo Y, Chen Q, Li J, Ye D, Zhou Y, Dong S, Liu X, Feng X. Asymmetric Catalytic Conjugate Addition of Cyanide to Chromones and β-Substituted Cyclohexenones. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yuhao Mo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Qiyou Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jinzhao Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Dong Ye
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
4
|
Tian Y, Wu F, Jia S, Gong X, Mao H, Wang P, Qin W, Yan H. Organocatalytic Asymmetric Construction of Tetrasubstituted Carbon Stereocenters Bearing Three Heteroatoms via Intramolecular Cyclization of Vinylidene ortho-Quinone Methide with Imidates. Org Lett 2022; 24:5073-5077. [PMID: 35819168 DOI: 10.1021/acs.orglett.2c01842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report herein an organocatalytic asymmetric protocol for the construction of tetrasubstituted carbon stereocenters bearing three heteroatoms. The reaction proceeded via the enantioselective intramolecular cyclization reaction of vinylidene ortho-quinone methide (VQM) with imidates to form pentacyclic heterocycles. The formed tetrasubstituted carbon center was stable under a high temperature and the conditions for further transformations.
Collapse
Affiliation(s)
- Yuhong Tian
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Fengdi Wu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Shiqi Jia
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Xiangnan Gong
- Analytical and Testing Center of Chongqing University, Chongqing University, Chongqing 401331, P. R. China
| | - Hui Mao
- College of Pharmacy, Jinhua Polytechnic, Jinhua, Zhejiang 321007, P. R. China
| | - Pengfei Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Wenling Qin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
5
|
Nagano T, Matsumoto A, Yoshizaki R, Asano K, Matsubara S. Non-enzymatic catalytic asymmetric cyanation of acylsilanes. Commun Chem 2022; 5:45. [PMID: 36697739 PMCID: PMC9814240 DOI: 10.1038/s42004-022-00662-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/09/2022] [Indexed: 01/28/2023] Open
Abstract
The asymmetric cyanation of acylsilanes affords densely functionalized tetrasubstituted chiral carbon centers bearing silyl, cyano, and hydroxy groups, which are of particular interest in synthetic and medicinal chemistry. However, this method has been limited to a few enzymatic approaches, which employ only one substrate because of substrate specificity. Here we show the non-enzymatic catalytic asymmetric cyanation of acylsilanes using a chiral Lewis base as an enantioselective catalyst, trimethylsilyl cyanide as a cyanating reagent, and isopropyl alcohol as an additive to drive catalyst turnover. High enantio- and site-selectivities are achieved in a catalytic manner, and a variety of functional groups are installed in optically active acylsilane cyanohydrins, thus overcoming the limitations imposed by substrate specificity in conventional enzymatic methods. A handle for the synthetic application of the products is also established through the development of a catalyst for protecting acylsilane cyanohydrins, which are unstable and difficult to protect alcohols.
Collapse
Affiliation(s)
- Tagui Nagano
- grid.258799.80000 0004 0372 2033Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto, 615-8510 Japan
| | - Akira Matsumoto
- grid.258799.80000 0004 0372 2033Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto, 615-8510 Japan ,grid.258799.80000 0004 0372 2033Present Address: Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida-Shimoadachi, Sakyo, Kyoto, 606-8501 Japan
| | - Ryotaro Yoshizaki
- grid.258799.80000 0004 0372 2033Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto, 615-8510 Japan
| | - Keisuke Asano
- grid.258799.80000 0004 0372 2033Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto, 615-8510 Japan
| | - Seijiro Matsubara
- grid.258799.80000 0004 0372 2033Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto, 615-8510 Japan
| |
Collapse
|
6
|
Zhang Y, Guo J, Han J, Zhou X, Cao W, Fu Z. Bifunctional squaramide catalyzed asymmetric synthesis of chiral α-mercaptosilanes. Org Biomol Chem 2021; 19:6412-6416. [PMID: 34235529 DOI: 10.1039/d1ob00981h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bifunctional squaramide-catalyzed nucleophilic addition of thiophenols to easily available β-silyl α,β-unsaturated carbonyl compounds has been successfully developed. A structurally diverse set of chiral α-mercaptosilanes was efficiently prepared in good to excellent yields with acceptable enantioselectivities. The reaction features mild reaction conditions, a broad substrate scope, and easy scale-up.
Collapse
Affiliation(s)
- Ye Zhang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Jingcheng Guo
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Jinna Han
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Xiangui Zhou
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Wei Cao
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Zhenqian Fu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| |
Collapse
|