1
|
Wei G, Zhou L, Luo J, Yu B, Ding F, Song J, Shi Y, Zhang J, Feng X, Liu N. Insight into the Catalytic Oxidation Mechanism of Hydrogen Isotopes by Pt Clusters Confined by Silicalite-1. Inorg Chem 2024; 63:14171-14182. [PMID: 39001852 DOI: 10.1021/acs.inorgchem.4c02070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Highly efficient removal of low concentrations of hydrogen isotope gas in air is crucial for the safe operation of nuclear energy plants. Herein, silicalite-1-confined Pt cluster catalysts were used for the catalytic oxidation of hydrogen isotopes, and the related catalytic mechanism was revealed. Increased temperature in direct hydrogen reduction treatment slightly increased the size of Pt clusters from 1.6 nm at 400 °C to 1.8 nm at 600 °C. The catalyst reduced at 600 °C exhibited excellent performance (99%) in hydrogen isotope oxidation at 75 °C, as well as high stability and catalytic efficiency in continuous and intermittent operation for 7200 min. X-ray absorbance spectroscopy confirmed the existence of Pt clusters in the catalysts, and the theoretical results showed that the total net charge was -0.07 e, indicating a slight charge transfer from the zeolite to the Pt atoms. The metal-support interaction thermally stabilized Pt clusters and altered the metal electronic structure, which enhanced the catalytic activity following a hydroperoxyl (OOH)-mediated route. Based on the low reaction temperature, efficient hydrogen conversion rate, and high stability, the silicalite-1-confined Pt cluster catalyst is expected to be used in hydrogen isotope oxidation treatment to achieve nuclear safety.
Collapse
Affiliation(s)
- Guilin Wei
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, Sichuan 621908, PR China
| | - Linsen Zhou
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, Sichuan 621908, PR China
| | - Junhong Luo
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, Sichuan 621908, PR China
| | - Bin Yu
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, Sichuan 621908, PR China
| | - Fengyun Ding
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China
| | - Jiangfeng Song
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, Sichuan 621908, PR China
| | - Yan Shi
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, Sichuan 621908, PR China
| | - Jianqiao Zhang
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, PR China
| | - Xingwen Feng
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, Sichuan 621908, PR China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China
| |
Collapse
|
2
|
Steiner K, Bermel W, Soong R, Lysak DH, Jenne A, Downey K, Wolff WW, Costa PM, Ronda K, Moxley-Paquette V, Pellizzari J, Simpson AJ. A simple 1H ( 12C/ 13C) filtered experiment to quantify and trace isotope enrichment in complex environmental and biological samples. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 361:107653. [PMID: 38471414 DOI: 10.1016/j.jmr.2024.107653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
Nuclear magnetic resonance (NMR) based 13C tracing has broad applications across medical and environmental research. As many biological and environmental samples are heterogeneous, they experience considerable spectral overlap and relatively low signal. Here a 1D 1H-12C/13C is introduced that uses "in-phase/opposite-phase" encoding to simultaneously detect and discriminate both protons attached to 12C and 13C at full 1H sensitivity in every scan. Unlike traditional approaches that focus on the 12C/13C satellite ratios in a 1H spectrum, this approach creates separate sub-spectra for the 12C and 13C bound protons. These spectra can be used for both quantitative and qualitative analysis of complex samples with significant spectral overlap. Due to the presence of the 13C dipole, faster relaxation of the 1H-13C pairs results in slight underestimation compared to the 1H-12C pairs. However, this is easily compensated for, by collecting an additional reference spectrum, from which the absolute percentage of 13C can be calculated by difference. When combined with the result, 12C and 13C percent enrichment in both 1H-12C and 1H-13C fractions are obtained. As the approach uses isotope filtered 1H NMR for detection, it retains nearly the same sensitivity as a standard 1H spectrum. Here, a proof-of-concept is performed using simple mixtures of 12C and 13C glucose, followed by suspended algal cells with varying 12C /13C ratios representing a complex mixture. The results consistently return 12C/13C ratios that deviate less than 1 % on average from the expected. Finally, the sequence was used to monitor and quantify 13C% enrichment in Daphnia magna neonates which were fed a 13C diet over 1 week. The approach helped reveal how the organisms utilized the 12C lipids they are born with vs. the 13C lipids they assimilate from their diet during growth. Given the experiments simplicity, versatility, and sensitivity, we anticipate it should find broad application in a wide range of tracer studies, such as fluxomics, with applications spanning various disciplines.
Collapse
Affiliation(s)
- Katrina Steiner
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Wolfgang Bermel
- Bruker Biospin GmbH, Rudolf-Plank-Str. 23, Ettlingen 76275, Germany
| | - Ronald Soong
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Daniel H Lysak
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Amy Jenne
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Katelyn Downey
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - William W Wolff
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Peter M Costa
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Kiera Ronda
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Vincent Moxley-Paquette
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Jacob Pellizzari
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Andre J Simpson
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.
| |
Collapse
|
3
|
Das R, Belgamwar R, Manna SS, Pathak B, Polshettiwar V, Nagaraja CM. Design of porphyrin-based frameworks for efficient visible light-promoted reduction of CO 2 from dilute gas: Combined experimental and theoretical investigation. J Colloid Interface Sci 2023; 652:480-489. [PMID: 37604059 DOI: 10.1016/j.jcis.2023.08.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/06/2023] [Accepted: 08/13/2023] [Indexed: 08/23/2023]
Abstract
The photocatalytic carbon dioxide reduction (CO2R) coupled with hydrogen evolution reaction (HER) constitutes a promising step for a sustainable generation of syngas (CO + H2), an essential feedstock for the preparation of several commodity chemicals. Herein, visible light/sunlight-promoted catalytic reduction of CO2 and protons to syngas using rationally designed porphyrin-based 2D porous organic frameworks, POF(Co/Zn) is demonstrated. Indeed, POF(Co) showed superior catalytic performance over the Zn counterpart with CO and H2 generation rates of 1104 and 3981 μmol g-1h-1, respectively. The excellent catalytic performance of Co-based POF is aided by the favorable transfer of photo-excited electrons from Ru-sensitizer to the CoII catalytic site, which is not feasible in the case of POF(Zn), revealed from the theoretical investigation. More importantly, the POF(Co) catalyzes the reduction of CO2 even from dilute gas (13% CO2), surpassing most reported framework-based photocatalytic systems. Significantly, the catalytic performance of POF(Co) was increased under natural sunlight conditions suggesting sunlight-promoted enhancement in syngas generation. The in-depth theoretical investigation further unveiled the comprehensive mechanistic pathway of the light-promoted concurrent CO and H2 generation. This work showcases the advantages of porphyrin-based frameworks for visible light/sunlight-promoted syngas generation by utilizing greenhouse gas (CO2) and protons under mild eco-friendly conditions.
Collapse
Affiliation(s)
- Rajesh Das
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Rajesh Belgamwar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Surya Sekhar Manna
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| | - Vivek Polshettiwar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - C M Nagaraja
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India.
| |
Collapse
|
4
|
Liu M, Zhang G, Ming R, Fu X, Jiang R, Tian L, Chen X. Reconstruction of Highly-Defective MgO and Exceptional Photochemical Activity on CO 2 Upgrade in Aqueous Solution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303405. [PMID: 37431200 DOI: 10.1002/smll.202303405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/21/2023] [Indexed: 07/12/2023]
Abstract
Defects on metal oxide have attracted extensive attention in photo-/electrocatalytic CO2 reduction. Herein, porous MgO nanosheets with abundant oxygen vacancies (Vo s) and three-coordinated oxygen atoms (O3c ) at corners are reported, which reconstruct into defective MgCO3 ·3H2 O exposing rich surface unsaturated -OH groups and vacancies to initiate photocatalytic CO2 reduction to CO and CH4 . In consecutive 7-cycle tests (each run for 6 h) in pure water, CO2 conversion keeps stable. The total production of CH4 and CO attains ≈367 µmol gcata -1 h-1 . The selectivity of CH4 gradually increases from ≈3.1% (1st run) to ≈24.5% (4th run) and then remains unchanged under UV-light irradiation. With triethanolamine (3.3 vol.%) as the sacrificial agent, the total production of CO and CH4 production rapidly increases to ≈28 000 µmol gcata -1 in 2 h reaction. Photoluminescence spectra reveal that Vo s induces the formation of donor bands to promote charge carrier seperation. A series of trace spectra and theoretical analysis indicate Mg-Vo sites in the derived MgCO3 ·3H2 O are active centers, which play a crucial role in modulating CO2 adsorption and triggering photoreduction reactions. These intriguing results on defective alkaline earth oxides as potential photocatalysts in CO2 conversion may spur some exciting and novel findings in this field.
Collapse
Affiliation(s)
- Mengping Liu
- Hubei Collaborative Innovation Center for Advanced Organochemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| | - Ganbing Zhang
- Hubei Collaborative Innovation Center for Advanced Organochemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| | - Ruiqi Ming
- Hubei Collaborative Innovation Center for Advanced Organochemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| | - Xin Fu
- Hubei Collaborative Innovation Center for Advanced Organochemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| | - Ruiyi Jiang
- Hubei Collaborative Innovation Center for Advanced Organochemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| | - Lihong Tian
- Hubei Collaborative Innovation Center for Advanced Organochemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| | - Xiaobo Chen
- Division of Energy, Matter, and Systems, School of Science and Engineering, University of Missouri - Kansas City, Kansas City, MO 64110, USA
| |
Collapse
|
5
|
Roy P, Ghoshal S, Pramanik A, Sarkar P. Single B-vacancy enriched α 1-borophene sheet: an efficient metal-free electrocatalyst for CO 2 reduction. Phys Chem Chem Phys 2023; 25:25018-25028. [PMID: 37698058 DOI: 10.1039/d3cp01866k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
By employing first principles calculations, we have studied the electronic structures of pristine (α1) and different defective (α1-t1, α1-t2) borophene sheets to understand the efficacy of such systems as metal-free electrocatalysts for the CO2 reduction reaction. Among the three studied systems, only α1-t1, the defective borophene sheet created by removal of a 5-coordinated boron atom, can chemisorb and activate a CO2 molecule for its subsequent reduction processes, leading to different C1 chemicals, followed by selective conversion into C2 products by multiple proton coupled electron transfer steps. The computed onset potentials for the C1 chemicals such as CH3OH and CH4 are low enough. On the other hand, in the case of the C2 reduction process, the C-C coupling barrier is only 0.80 eV in the solvent phase which produces CH3CHO and CH3CH2OH with very low onset potential values of -0.21 and -0.24 V, respectively, suppressing the competing hydrogen evolution reaction.
Collapse
Affiliation(s)
- Prodyut Roy
- Department of Chemistry, Visva-Bharati University, Santiniketan-731235, India.
| | - Sourav Ghoshal
- Department of Chemistry, Visva-Bharati University, Santiniketan-731235, India.
| | - Anup Pramanik
- Department of Chemistry, Sidho-Kanho-Birsha University, Purulia-723104, India
| | - Pranab Sarkar
- Department of Chemistry, Visva-Bharati University, Santiniketan-731235, India.
| |
Collapse
|
6
|
CO2 conversion to volatile fatty acids by anaerobic granular sludge and Mg0. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Sen R, Goeppert A, Surya Prakash GK. Homogeneous Hydrogenation of CO 2 and CO to Methanol: The Renaissance of Low-Temperature Catalysis in the Context of the Methanol Economy. Angew Chem Int Ed Engl 2022; 61:e202207278. [PMID: 35921247 PMCID: PMC9825957 DOI: 10.1002/anie.202207278] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 01/11/2023]
Abstract
The traditional economy based on carbon-intensive fuels and materials has led to an exponential rise in anthropogenic CO2 emissions. Outpacing the natural carbon cycle, atmospheric CO2 levels increased by 50 % since the pre-industrial age and can be directly linked to global warming. Being at the core of the proposed methanol economy pioneered by the late George A. Olah, the chemical recycling of CO2 to produce methanol, a green fuel and feedstock, is a prime channel to achieve carbon neutrality. In this direction, homogeneous catalytic systems have lately been a major focus for methanol synthesis from CO2 , CO and their derivatives as potential low-temperature alternatives to the commercial processes. This Review provides an account of this rapidly growing field over the past decade, since its resurgence in 2011. Based on the critical assessment of the progress thus far, the present key challenges in this field have been highlighted and potential directions have been suggested for practically viable applications.
Collapse
Affiliation(s)
- Raktim Sen
- Loker Hydrocarbon Research Institute and Department of ChemistryUniversity of Southern CaliforniaUniversity ParkLos AngelesCA90089-1661USA
| | - Alain Goeppert
- Loker Hydrocarbon Research Institute and Department of ChemistryUniversity of Southern CaliforniaUniversity ParkLos AngelesCA90089-1661USA
| | - G. K. Surya Prakash
- Loker Hydrocarbon Research Institute and Department of ChemistryUniversity of Southern CaliforniaUniversity ParkLos AngelesCA90089-1661USA
| |
Collapse
|
8
|
Prakash SG, Sen R, Goeppert A. Homogeneous Hydrogenation of CO2 and CO to Methanol: The Renaissance of Low Temperature Catalysis in the Context of the Methanol Economy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Surya G. Prakash
- University of Southern California Loker Hydrocarbon Research Institute 837 Bloom WalkUniversity Park 90089-1661 Los Angeles UNITED STATES
| | - Raktim Sen
- University of Southern California Loker Hydrocarbon Res. Inst., and Department box Chemistry UNITED STATES
| | - Alain Goeppert
- University of Southern California Loker Hydrocarbon Res. Inst., and Department of Chemistry UNITED STATES
| |
Collapse
|
9
|
Das R, Manna SS, Pathak B, Nagaraja CM. Strategic Design of Mg-Centered Porphyrin Metal-Organic Framework for Efficient Visible Light-Promoted Fixation of CO 2 under Ambient Conditions: Combined Experimental and Theoretical Investigation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33285-33296. [PMID: 35839282 DOI: 10.1021/acsami.2c07969] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The sunlight-driven fixation of CO2 into valuable chemicals constitutes a promising approach toward environmental remediation and energy sustainability over traditional thermal-driven fixation. Consequently, in this article, we report a strategic design and utilization of Mg-centered porphyrin-based metal-organic framework (MOFs) having relevance to chlorophyll in green plants as a visible light-promoted highly recyclable catalyst for the effective fixation of CO2 into value-added cyclic carbonates under ambient conditions. Indeed, the Mg-centered porphyrin MOF showed good CO2 capture ability with a high heat of adsorption (44.5 kJ/mol) and superior catalytic activity under visible light irradiation in comparison to thermal-driven conditions. The excellent light-promoted catalytic activity of Mg-porphyrin MOF has been attributed to facile ligand-to-metal charge transfer transition from the photoexcited Mg-porphyrin unit (SBU) to the Zr6 cluster which in turn activates CO2, thereby lowering the activation barrier for its cycloaddition with epoxides. The in-depth theoretical studies further unveiled the detailed mechanistic path of the light-promoted conversion of CO2 into high-value cyclic carbonates. This study represents a rare demonstration of sunlight-promoted sustainable fixation of CO2, a greenhouse gas into value-added chemicals.
Collapse
Affiliation(s)
- Rajesh Das
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Surya Sekhar Manna
- Department of Chemistry, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| | - C M Nagaraja
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
10
|
Water coordinated on Cu(I)-based catalysts is the oxygen source in CO 2 reduction to CO. Nat Commun 2022; 13:2577. [PMID: 35562192 PMCID: PMC9095693 DOI: 10.1038/s41467-022-30289-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 04/12/2022] [Indexed: 11/21/2022] Open
Abstract
Catalytic reduction of CO2 over Cu-based catalysts can produce various carbon-based products such as the critical intermediate CO, yet significant challenges remain in shedding light on the underlying mechanisms. Here, we develop a modified triple-stage quadrupole mass spectrometer to monitor the reduction of CO2 to CO in the gas phase online. Our experimental observations reveal that the coordinated H2O on Cu(I)-based catalysts promotes CO2 adsorption and reduction to CO, and the resulting efficiencies are two orders of magnitude higher than those without H2O. Isotope-labeling studies render compelling evidence that the O atom in produced CO originates from the coordinated H2O on catalysts, rather than CO2 itself. Combining experimental observations and computational calculations with density functional theory, we propose a detailed reaction mechanism of CO2 reduction to CO over Cu(I)-based catalysts with coordinated H2O. This study offers an effective method to reveal the vital roles of H2O in promoting metal catalysts to CO2 reduction. Understanding the underlying mechanisms for catalytic reduction of CO2 over Cu based catalysts remains challenging. Here, the authors develop an effective method to reveal the vital roles of H2O in promoting metal catalysts to CO2 reduction via a modified triple stage quadrupole mass spectrometer.
Collapse
|
11
|
Zhang C, Wang A, Guo L, Yi J, Luo J. A Moisture-Assisted Rechargeable Mg-CO 2 Battery. Angew Chem Int Ed Engl 2022; 61:e202200181. [PMID: 35170161 DOI: 10.1002/anie.202200181] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 11/07/2022]
Abstract
New sustainable energy conversion and storage technologies are required to address the energy crisis and CO2 emission. Among various metal-CO2 batteries that utilize CO2 and offer high energy density, rechargeable Mg-CO2 batteries based on earth-abundant and safe magnesium (Mg) metal have been limited due to the lack of a compatible electrolyte, operation atmosphere, and unambiguous reaction process. Herein, the first rechargeable nonaqueous Mg-CO2 batteries have been proposed with moisture assistance in a CO2 atmosphere. These display more than 250 h cycle life and maintain the discharge voltage over 1 V at 200 mA g-1 . Combining with the experimental observations and theoretical calculations, the reaction in the moisture-assisted Mg-CO2 battery is revealed to be 2 Mg+3 CO2 +6 H2 O↔2 MgCO3 ⋅3 H2 O+C. It is anticipated that the moisture-assisted rechargeable Mg-CO2 batteries would stimulate the development of multivalent metal-CO2 batteries and extend CO2 fixation and utilization for carbon neutrality.
Collapse
Affiliation(s)
- Chenyue Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineer and Technology, Tianjin University, Tianjin, 300072, China
| | - Aoxuan Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineer and Technology, Tianjin University, Tianjin, 300072, China
| | - Longyuan Guo
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineer and Technology, Tianjin University, Tianjin, 300072, China
| | - Jin Yi
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Jiayan Luo
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineer and Technology, Tianjin University, Tianjin, 300072, China.,Shanghai Key Lab of Advanced High-Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| |
Collapse
|
12
|
Debnath B, Singh S, Hossain SM, Krishnamurthy S, Polshettiwar V, Ogale S. Visible Light-Driven Highly Selective CO 2 Reduction to CH 4 Using Potassium-Doped g-C 3N 5. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3139-3148. [PMID: 35234471 DOI: 10.1021/acs.langmuir.1c03127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Establishment of an efficient and robust artificial photocatalytic system to convert solar energy into chemical fuels through CO2 conversion is a cherished goal in the fields of clean energy and environmental protection. In this work, we have explored an emergent low-Z nitrogen-rich carbon nitride material g-C3N5 (analogue of g-C3N4) for CO2 conversion under visible light illumination. A significant enhancement of the CH4 production rate was detected for g-C3N5 in comparison to that of g-C3N4. Notably, g-C3N5 also showed a very impressive selectivity of 100% toward CH4 as compared to 21% for g-C3N4. The photocatalytic CO2 conversion was performed without using sacrificial reagents. We found that 1% K doping in g-C3N5 enhanced its performance even further without compromising the selectivity. Moreover, 1% K-doped g-C3N5 also exhibited better photostability than undoped g-C3N5. We have also employed density functional theory calculation-based analyses to understand and elucidate the possible reasons for the better photocatalytic performance of K-doped g-C3N5.
Collapse
Affiliation(s)
- Bharati Debnath
- Department of Physics and Centre for Energy Science, Indian Institute of Science Education and Research (IISER) Pune, Maharashtra 411008, India
- Research Institute for Sustainable Energy (RISE), TCG Centres for Research and Education in Science and Technology (TCG-CREST), Kolkata 700091, India
| | - Saideep Singh
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai 400005, India
| | - Sk Mujaffar Hossain
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research (IISER) Pune, Maharashtra 411008, India
| | - Shrreya Krishnamurthy
- Department of Physics and Centre for Energy Science, Indian Institute of Science Education and Research (IISER) Pune, Maharashtra 411008, India
| | - Vivek Polshettiwar
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai 400005, India
| | - Satishchandra Ogale
- Department of Physics and Centre for Energy Science, Indian Institute of Science Education and Research (IISER) Pune, Maharashtra 411008, India
- Research Institute for Sustainable Energy (RISE), TCG Centres for Research and Education in Science and Technology (TCG-CREST), Kolkata 700091, India
| |
Collapse
|
13
|
Zhang C, Wang A, Guo L, Yi J, Luo J. A Moisture‐Assisted Rechargeable Mg−CO
2
Battery. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chenyue Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineer and Technology Tianjin University Tianjin 300072 China
| | - Aoxuan Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineer and Technology Tianjin University Tianjin 300072 China
| | - Longyuan Guo
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineer and Technology Tianjin University Tianjin 300072 China
| | - Jin Yi
- Institute for Sustainable Energy/College of Sciences Shanghai University Shanghai 200444 China
| | - Jiayan Luo
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineer and Technology Tianjin University Tianjin 300072 China
- Shanghai Key Lab of Advanced High-Temperature Materials and Precision Forming School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 200240 P.R. China
| |
Collapse
|
14
|
Bhattacharjee I, Sultana M, Bhunya S, Paul A. The curious saga of dehydrogenation/hydrogenation for chemical hydrogen storage: a mechanistic perspective. Chem Commun (Camb) 2022; 58:1672-1684. [PMID: 35024699 DOI: 10.1039/d1cc06238g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen storage is an indispensable component of hydrogen-based fuel economy. Chemical hydrogen storage relies on the development of lightweight compounds which can deliver high weight percentage of H2 at moderate temperatures through dehydrogenation and can be recovered from the dehydrogenated mass by hydrogenation for reuse. In this feature article we primarily discuss the mechanistic underpinnings of the catalytic dehydrogenation of ammonia-borane, a potential candidate for hydrogen storage and the challenges associated with its regeneration from the dehydrogenated mass. Moreover, we highlight the mechanistic intricacies, viability, sustainability and unresolved issues of allied chemical hydrogen storage avenues such as the CH3OH-CO2 cycle.
Collapse
Affiliation(s)
| | - Munia Sultana
- Indian Association for the Cultivation of Science, Kolkata, India.
| | - Sourav Bhunya
- Indian Association for the Cultivation of Science, Kolkata, India.
| | - Ankan Paul
- Indian Association for the Cultivation of Science, Kolkata, India.
| |
Collapse
|
15
|
Das R, Parihar V, Nagaraja CM. Strategic design of a bifunctional Ag( i)-grafted NHC-MOF for efficient chemical fixation of CO 2 from a dilute gas under ambient conditions. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00479h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Facile grafting of catalytically active Ag(i) into CO2-philic NHC-MOF for simultaneous capture and conversion of CO2 from dilute gas to value-added α-alkylidene cyclic carbonate and oxazolidinones under mild conditions is demonstrated.
Collapse
Affiliation(s)
- Rajesh Das
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Vaibhav Parihar
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - C. M. Nagaraja
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| |
Collapse
|
16
|
Roles of London Dispersive and Polar Components of Nano-Metal-Coated Activated Carbons for Improving Carbon Dioxide Uptake. COATINGS 2021. [DOI: 10.3390/coatings11060691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Adsorption using carbonaceous materials has been considered as the prevailing technology for CO2 capture because it offers advantages such as high adsorption capacity, durability, and economic benefits. Activated carbon (AC) has been widely used as an adsorbent for CO2 capture. We investigated CO2 adsorption behaviors of magnesium oxide-coated AC (MgO-AC) as a function of MgO content. The microstructure and textural properties of MgO-AC were characterized by X-ray diffraction and nitrogen adsorption–desorption isotherms at 77 K, respectively. The CO2 adsorption behaviors of MgO-AC were evaluated at 298 K and 1 atm. Our experimental results revealed that the presence of MgO plays a key role in increasing the CO2 uptake through the interaction between an acidic adsorbate (e+) and an efficient basic adsorbent (e−).
Collapse
|