1
|
Sugawara Y, Uesato T, Tabata J. Sex Pheromone of the Papaya Mealybug. J Chem Ecol 2025; 51:22. [PMID: 39904809 PMCID: PMC11794419 DOI: 10.1007/s10886-025-01574-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 02/06/2025]
Abstract
Sex pheromones of mealybugs are reported from more than 20 species and have generally been shown to be monoterpene alcohols esterified with short-chain carboxylic acids. Here, however, we discovered and isolated an alcohol without an acid moiety as a pheromone compound released from adult females of the papaya mealybug, Paracoccus marginatus. By means of gas chromatography - mass spectrometry and nuclear magnetic resonance spectroscopy analyses, the structure was identified to be trans-2-(2-isopropenyl-1-methylcyclobutyl)ethanol, a monoterpene with a unique cyclobutene skeleton, commonly known as fragranol. We then completely separated synthetic (±)-fragranol into each enantiomer by means of preparative high-performance liquid chromatography using a chiral resolution column, and (-)-(1S,2S)-fragranol was definitely confirmed to be the natural pheromone and to attract many males in the field when used as a pheromone trap lure. (±)-Fragranol showed attractiveness comparable to that of the pure (-)-(1S,2S)-enantiomer. This study provides not only useful information for the monitoring and management of P. marginatus but also an interesting exception underlining the great diversity of mealybug pheromone structures.
Collapse
Affiliation(s)
- Yuma Sugawara
- Division of Fruit Tree and Tea Pest Control Research, Institute for Plant Protection, National Agriculture and Food Research Organization, 301-2 Akitsu, Higashi-Hiroshima, Hiroshima, 739‑2494, Japan
| | - Takumi Uesato
- Department of Agriculture, Forestry and Fisheries, Okinawa Prefecture, Okinawa Prefectural Plant Protection Center, 123 Maji, Naha, Okinawa, 901-0072, Japan
| | - Jun Tabata
- Division of Core Technology for Pest Control Research, Institute for Plant Protection, National Agriculture and Food Research Organization, 3‑1‑3 Kannondai, Tsukuba, Ibaraki, 305‑8604, Japan.
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
2
|
Wu Q, Zhang Z, Chong Q, Meng F. Photoredox/Cobalt-Catalyzed Chemo-, Regio-, Diastereo- and Enantioselective Reductive Coupling of 1,1-Disubstituted Allenes and Cyclobutenes. Angew Chem Int Ed Engl 2025; 64:e202416524. [PMID: 39715712 DOI: 10.1002/anie.202416524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 12/25/2024]
Abstract
A dual photoredox/cobalt-catalyzed protocol for chemo-, regio-, diastereo- and enantioselective reductive coupling of 1,1-disubstituted allenes and cyclobutenes through chemo-, regio-, diastereo- and enantioselective oxidative cyclization followed by stereoselective protonation promoted by a chiral phosphine-cobalt complex is presented. Such process represents an unprecedented reaction pathway for cobalt catalysis that enables selective transformation of the less sterically congested alkenes of 1,1-disubstituted allenes with cyclobutenes, incorporating a broad scope of tetrasubstituted alkenes into the cyclobutane scaffolds in up to 86 % yield, >98 : 2 chemo- and regioselectivity, >98 : 2 dr and >99.5:0.5 er. Functionalization delivered a variety of enantioenriched cyclobutanes that are otherwise difficult to access. Preliminary mechanistic studies revealed that the reactions proceeded through oxidative cyclization followed by protonation and protonation might be the rate-determining step.
Collapse
Affiliation(s)
- Qianghui Wu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zhihan Zhang
- College of Chemistry, Central China Normal University, 152 Louyu Road, Wuhan, Hubei, 430079, China
| | - Qinglei Chong
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Fanke Meng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100871, China
| |
Collapse
|
3
|
Shi Z, Lu L, Lu P. Pd/C-Catalyzed Stereoselective Arene Hydrogenation of Benzocyclobutenes Enabled by π-Bond Localization. Org Lett 2024; 26:5353-5357. [PMID: 38885207 DOI: 10.1021/acs.orglett.4c01737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
We developed here a Pd/C-catalyzed diastereoselective cis-hydrogenation of benzocyclobutene derivatives under mild conditions to deliver an array of bicyclo[4.2.0]octane scaffolds with up to five stereocenters. The π-bond localization enabled hydrogenation of the arene moiety to occur even at room temperature under 1 atm of a H2 atmosphere.
Collapse
Affiliation(s)
- Zhan Shi
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Licheng Lu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Ping Lu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| |
Collapse
|
4
|
Deng M, Yang J, Kong Z, Li Y, Wang Q, Liu H, Deng SZ, Li N. Manganese/Enzyme Sequential Catalytic Pathway for the Production of Optically Active γ-Functionalized Alcohols. J Org Chem 2024; 89:9103-9109. [PMID: 38842047 DOI: 10.1021/acs.joc.4c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
A brief, practical catalytic process for the production of optically active γ-functionalized alcohols from relevant alkenes has been developed by using a robust Mn(III)/air/(Me2SiH)2O catalytic system combined with lipase-catalyzed kinetic resolution. This approach demonstrates exceptional tolerance toward proximal functional groups present on alkenes, enabling the achievement of high yields and exclusive enantioselectivity. Under this sequential catalytic system, the chiral alkene precursors can also be converted into γ-functionalized alcohols and related acetates as separable single enantiomers.
Collapse
Affiliation(s)
- Meng Deng
- College of Food and Drug, Luoyang Normal University, Luoyang, Henan Province 471934, China
| | - Jiaqi Yang
- College of Food and Drug, Luoyang Normal University, Luoyang, Henan Province 471934, China
| | - Zhiyi Kong
- College of Food and Drug, Luoyang Normal University, Luoyang, Henan Province 471934, China
| | - Yaning Li
- College of Food and Drug, Luoyang Normal University, Luoyang, Henan Province 471934, China
| | - Quanpeng Wang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan Province 471934, China
| | - Huan Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, Henan Province 471023, China
| | - Shu-Zhen Deng
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, Henan Province 471023, China
| | - Nan Li
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan Province 471934, China
| |
Collapse
|
5
|
Lan S, Huang H, Liu W, Xu C, Lei X, Dong W, Liu J, Yang S, Cotman AE, Zhang Q, Fang X. Asymmetric Transfer Hydrogenation of Cyclobutenediones. J Am Chem Soc 2024; 146:4942-4957. [PMID: 38326715 DOI: 10.1021/jacs.3c14239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Four-membered carbocycles are fundamental substructures in bioactive molecules and approved drugs and serve as irreplaceable building blocks in organic synthesis. However, developing efficient protocols furnishing diversified four-membered ring compounds in a highly regio-, diastereo-, and enantioselective fashion remains challenging but very desirable. Here, we report the unprecedented asymmetric transfer hydrogenation of cyclobutenediones. The reaction can selectively afford three types of four-membered products in high yields with high stereoselectivities, and the highly functionalized products enable a series of further transformations to form more diversified four-membered compounds. Asymmetric synthesis of di-, tri-, and tetrasubstituted bioactive molecules has also been achieved. Systematic mechanistic studies and theoretical calculations have revealed the origin of the regioselectivity, the key hydrogenation transition state models, and the sequence of the double and triple hydrogenation processes. The work provides a new choice for the catalytic asymmetric synthesis of cyclobutanes and related structures and demonstrates the robustness of asymmetric transfer hydrogenation in the accurate selectivity control of highly functionalized substrates.
Collapse
Affiliation(s)
- Shouang Lan
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Huangjiang Huang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
- Fujian Normal University, Fuzhou 350108, China
| | - Wenjun Liu
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Chao Xu
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Xiang Lei
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Wennan Dong
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Andrej Emanuel Cotman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
6
|
Wang H, Gao Z, Wang J, Chen D, Wang Y, Sun H, Hao HD, Ren L. Asymmetric Synthesis of Scillascillin-Type Homoisoflavonoid. Org Lett 2024; 26:834-838. [PMID: 38240237 DOI: 10.1021/acs.orglett.3c03968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The first asymmetric synthesis of a scillascillin-type homoisoflavonoid was reported. Key reactions for the asymmetric synthesis of benzocyclobutene include catalytic reductive desymmetrization of malonic ester and an intramolecular C-H activation of the methyl group.
Collapse
Affiliation(s)
- Huachao Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhiyu Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dantong Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanhai Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hong-Dong Hao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Science, Shanghai 200032, China
| | - Li Ren
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
7
|
Liang Z, Wang L, Wang Y, Wang L, Chong Q, Meng F. Cobalt-Catalyzed Diastereo- and Enantioselective Carbon-Carbon Bond Forming Reactions of Cyclobutenes. J Am Chem Soc 2023; 145:3588-3598. [PMID: 36734874 DOI: 10.1021/jacs.2c12475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Catalytic enantioselective functionalization of cyclobutenes constitutes a general and modular strategy for construction of enantioenriched complex cyclobutanes bearing multiple stereogenic centers, as chiral four-membered rings are common motifs in biologically active molecules and versatile intermediates in organic synthesis. However, enantioselective synthesis of cyclobutanes through such a strategy remained significantly limited. Herein, we report a series of unprecedented cobalt-catalyzed carbon-carbon bond forming reactions of cyclobutenes that are initiated through enantioselective carbometalation. The protocols feature diastereo- and enantioselective introduction of allyl, alkynyl, and functionalized alkyl groups. Mechanistic studies indicated an unusual 1,3-cobalt migration and subsequent β-carbon elimination cascade process occurred in the allyl addition. These new discoveries established a new elementary process for cobalt catalysis and an extension of diversity of nucleophiles for enantioselective transformations of cyclobutenes.
Collapse
Affiliation(s)
- Zhikun Liang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China, 200032
| | - Lei Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China, 200032
| | - Yu Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China, 200032
| | - Lifan Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China, 200032
| | - Qinglei Chong
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China, 200032
| | - Fanke Meng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China, 200032.,School of Chemistry and Material Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China, 310024
| |
Collapse
|
8
|
Costa AL, Monteiro RP, Nunes Barradas PD, Ferreira SCR, Cunha C, Gomes AC, Gonçalves IS, Seixas de Melo JS, Pillinger M. Enhanced thermal and photo-stability of a para-substituted dicumyl ketone intercalated in a layered double hydroxide. Front Chem 2022; 10:1004586. [DOI: 10.3389/fchem.2022.1004586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
A ketodiacid, 4,4′-dicarboxylate-dicumyl ketone (3), has been intercalated into a Zn, Al layered double hydroxide (LDH) by a coprecipitation synthesis strategy. The structure and chemical composition of the resultant hybrid material (LDH-KDA3) were characterized by powder X-ray diffraction (PXRD), FT-IR, FT-Raman and solid-state 13C{1H} NMR spectroscopies, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), thermogravimetric analysis (TGA), and elemental analysis (CHN). PXRD showed that the dicarboxylate guest molecules assembled into a monolayer to give a basal spacing of 18.0 Å. TGA revealed that the organic guest starts to decompose at a significantly higher temperature (ca. 330°C) than that determined for the free ketodiacid (ca. 230°C). Photochemical experiments were performed to probe the photoreactivity of the ketoacid in the crystalline state, in solution, and as a guest embedded within the photochemically-inert LDH host. Irradiation of the bulk crystalline ketoacid results in photodecarbonylation and the exclusive formation of the radical-radical combination product. Solution studies employing the standard myoglobin (Mb) assay for quantification of released CO showed that the ketoacid behaved as a photoactivatable CO-releasing molecule for transfer of CO to heme proteins, although the photoreactivity was low. No photoinduced release of CO was found for the LDH system, indicating that molecular confinement enhanced the photo-stability of the hexasubstituted ketone. To better understand the behavior of 3 under irradiation, a more comprehensive study, involving excitation of this compound in DMSO-d6 followed by 1H NMR, UV-Vis and fluorescence spectroscopy, was undertaken and further rationalized with the help of time-dependent density functional theory (TDDFT) electronic quantum calculations. The photophysical study showed the formation of a less emissive compound (or compounds). New signals in the 1H NMR spectra were attributed to photoproducts obtained via Norrish type I α-cleavage decarbonylation and Norrish type II (followed by CH3 migration) pathways. TDDFT calculations predicted that the formation of a keto-enol system (via a CH3 migration step in the type II pathway) was highly favorable and consistent with the observed spectral data.
Collapse
|
9
|
Brześkiewicz J, Loska R. Palladium-Catalyzed Access to Benzocyclobutenone-Derived Ketonitrones via C(sp 2)-H Functionalization. Org Lett 2022; 24:3960-3964. [PMID: 35613705 PMCID: PMC9278523 DOI: 10.1021/acs.orglett.2c01317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The palladium-catalyzed C(sp2)-H functionalization of bromoaryl aldonitrones leading to benzocyclobutenone-derived ketonitrones is described. This method allows for the preparation of a wide range of strained, four-membered ketonitrones with broad functional group tolerance. Downstream transformations of the formed products were readily demonstrated, illustrating the synthetic utility of the obtained benzocyclobutenone-derived nitrones for the construction of polycyclic nitrogen-containing scaffolds.
Collapse
Affiliation(s)
- Jakub Brześkiewicz
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Rafał Loska
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
10
|
Chen J, Zhou Q, Fang H, Lu P. Dancing on Ropes ‐ Enantioselective Functionalization of Preformed Four‐membered Carbocycles. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jun Chen
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu Shanghai 200433 China
| | - Qiang Zhou
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu Shanghai 200433 China
| | - Huayi Fang
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, No 38 Tongyan Road Tianjin 300350 China
| | - Ping Lu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu Shanghai 200433 China
| |
Collapse
|
11
|
Chen J, Shi Z, Lu P. Enantioselective Synthesis of Indanes with a Quaternary Stereocenter via Diastereoselective C(sp 3)-H Functionalization. Org Lett 2021; 23:7359-7363. [PMID: 34506151 DOI: 10.1021/acs.orglett.1c02513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A practical synthesis of enantioenriched indane derivatives with quaternary stereocenters was developed via sequential enantioselective reduction and C-H functionalization. Good to excellent enantioselectivity could be achieved by either the CuH-catalyzed asymmetric reduction or the Corey-Bakshi-Shibata (CBS) reduction of indanone derivatives. The subsequent diastereospecific and regioselective rhodium-catalyzed silylation of the methyl C-H bond led to indane derivatives with quaternary centers. This strategy was further applied in syntheses of (nor)illudalane and botryane sesquiterpenoids.
Collapse
Affiliation(s)
- Jun Chen
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Zhan Shi
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Ping Lu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| |
Collapse
|