1
|
Gabbani A, Poncet M, Pescitelli G, Carbonaro L, Krzystek J, Colacio E, Piguet C, Pineider F, Di Bari L, Jiménez JR, Zinna F. Magnetic circularly polarized luminescence from spin-flip transitions in a molecular ruby. Chem Sci 2024; 15:d4sc04718d. [PMID: 39364071 PMCID: PMC11443232 DOI: 10.1039/d4sc04718d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
Magnetic circularly polarized luminescence (MCPL), i.e. the possibility of generating circularly polarized luminescence in the presence of a magnetic field in achiral or racemic compounds, is a technique of rising interest. Here we show that the far-red spin-flip (SF) transitions of a molecular Cr(iii) complex give intense MCD (magnetic circular dichroism) and in particular MCPL (g MCPL up to 6.3 × 10-3 T-1) even at magnetic fields as low as 0.4 T. Cr(iii) doublet states and SF emission are nowadays the object of many investigations, as they may open the way to several applications. Due to their nature, such transitions can be conveniently addressed by MCPL, which strongly depends on the zero field splitting and Zeeman splitting of the involved states. Despite the complexity of the nature of such states and the related photophysics, the obtained MCPL data can be rationalized consistently with the information recovered with more established techniques, such as HFEPR (high-frequency and -field electron paramagnetic resonance). We anticipate that emissive molecular Cr(iii) species may be useful in magneto-optical devices, such as magnetic CP-OLEDs.
Collapse
Affiliation(s)
- Alessio Gabbani
- Dipartimento di Chimica e Chimica Industriale, University of Pisa Via Moruzzi 13 56124 Pisa Italy
- Department of Physics and Astronomy, University of Florence Via Sansone 1 50019 Sesto Fiorentino Italy
| | - Maxime Poncet
- Department of Inorganic and Analytical Chemistry, University of Geneva 30 Quai E. Ansermet CH-1211 Geneva 4 Switzerland
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, University of Pisa Via Moruzzi 13 56124 Pisa Italy
| | - Laura Carbonaro
- Dipartimento di Chimica e Chimica Industriale, University of Pisa Via Moruzzi 13 56124 Pisa Italy
| | - J Krzystek
- National High Magnetic Field Laboratory, Florida State University Tallahassee Florida 32310 USA
| | - Enrique Colacio
- Departamento de Química Inorgánica, Facultad de Ciencias, University of Granada, Unidad de Excelencia en Química (UEQ) Avda. Fuente Nueva s/n 18071 Granada Spain
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry, University of Geneva 30 Quai E. Ansermet CH-1211 Geneva 4 Switzerland
| | - Francesco Pineider
- Dipartimento di Chimica e Chimica Industriale, University of Pisa Via Moruzzi 13 56124 Pisa Italy
- Department of Physics and Astronomy, University of Florence Via Sansone 1 50019 Sesto Fiorentino Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, University of Pisa Via Moruzzi 13 56124 Pisa Italy
| | - Juan-Ramón Jiménez
- Departamento de Química Inorgánica, Facultad de Ciencias, University of Granada, Unidad de Excelencia en Química (UEQ) Avda. Fuente Nueva s/n 18071 Granada Spain
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale, University of Pisa Via Moruzzi 13 56124 Pisa Italy
| |
Collapse
|
2
|
Trippmacher S, Demeshko S, Prescimone A, Meyer F, Wenger OS, Wang C. Ferromagnetically Coupled Chromium(III) Dimer Shows Luminescence and Sensitizes Photon Upconversion. Chemistry 2024; 30:e202400856. [PMID: 38523568 DOI: 10.1002/chem.202400856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 03/26/2024]
Abstract
There has been much progress on mononuclear chromium(III) complexes featuring luminescence and photoredox activity, but dinuclear chromium(III) complexes have remained underexplored in these contexts until now. We identified a tridentate chelate ligand able to accommodate both meridional and facial coordination of chromium(III), to either access a mono- or a dinuclear chromium(III) complex depending on reaction conditions. This chelate ligand causes tetragonally distorted primary coordination spheres around chromium(III) in both complexes, entailing comparatively short excited-state lifetimes in the range of 400 to 800 ns in solution at room temperature and making photoluminescence essentially oxygen insensitive. The two chromium(III) ions in the dimer experience ferromagnetic exchange interactions that result in a high spin (S=3) ground state with a coupling constant of +9.3 cm-1. Photoinduced energy transfer from the luminescent ferromagnetically coupled dimer to an anthracene derivative results in sensitized triplet-triplet annihilation upconversion. Based on these proof-of-principle studies, dinuclear chromium(III) complexes seem attractive for the development of fundamentally new types of photophysics and photochemistry enabled by magnetic exchange interactions.
Collapse
Affiliation(s)
- Simon Trippmacher
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Serhiy Demeshko
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, 37077, Göttingen, Germany
| | - Alessandro Prescimone
- Department of Chemistry, BPR 1096, University of Basel, Mattenstrasse 24a, 4058, Basel, Switzerland
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, 37077, Göttingen, Germany
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Cui Wang
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
- Department of Biology and Chemistry, Osnabrück University, Barbarastraße 7, 49076, Osnabrück, Germany
| |
Collapse
|
3
|
Kitzmann WR, Hunger D, Reponen APM, Förster C, Schoch R, Bauer M, Feldmann S, van Slageren J, Heinze K. Electronic Structure and Excited-State Dynamics of the NIR-II Emissive Molybdenum(III) Analogue to the Molecular Ruby. Inorg Chem 2023; 62:15797-15808. [PMID: 37718553 DOI: 10.1021/acs.inorgchem.3c02186] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Photoactive chromium(III) complexes saw a conceptual breakthrough with the discovery of the prototypical molecular ruby mer-[Cr(ddpd)2]3+ (ddpd = N,N'-dimethyl-N,N'-dipyridin-2-ylpyridine-2,6-diamine), which shows intense long-lived near-infrared (NIR) phosphorescence from metal-centered spin-flip states. In contrast to the numerous studies on chromium(III) photophysics, only 10 luminescent molybdenum(III) complexes have been reported so far. Here, we present the synthesis and characterization of mer-MoX3(ddpd) (1, X = Cl; 2, X = Br) and cisfac-[Mo(ddpd)2]3+ (cisfac-[3]3+), an isomeric heavy homologue of the prototypical molecular ruby. For cisfac-[3]3+, we found strong zero-field splitting using magnetic susceptibility measurements and electron paramagnetic resonance spectroscopy. Electronic spectra covering the spin-forbidden transitions show that the spin-flip states in mer-1, mer-2, and cisfac-[3]3+ are much lower in energy than those in comparable chromium(III) compounds. While all three complexes show weak spin-flip phosphorescence in NIR-II, the emission of cisfac-[3]3+ peaking at 1550 nm is particularly low in energy. Femtosecond transient absorption spectroscopy reveals a short excited-state lifetime of 1.4 ns, 6 orders of magnitude shorter than that of mer-[Cr(ddpd)2]3+. Using density functional theory and ab initio multireference calculations, we break down the reasons for this disparity and derive principles for the design of future stable photoactive molybdenum(III) complexes.
Collapse
Affiliation(s)
- Winald R Kitzmann
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
- Rowland Institute, Harvard University, 100 Edwin H. Land Boulevard, Cambridge, Massachusetts 02142, United States
| | - David Hunger
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Antti-Pekka M Reponen
- Rowland Institute, Harvard University, 100 Edwin H. Land Boulevard, Cambridge, Massachusetts 02142, United States
| | - Christoph Förster
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Roland Schoch
- Faculty of Science, Chemistry Department and Centre for Sustainable Systems Design, Paderborn University, 33098 Paderborn, Germany
| | - Matthias Bauer
- Faculty of Science, Chemistry Department and Centre for Sustainable Systems Design, Paderborn University, 33098 Paderborn, Germany
| | - Sascha Feldmann
- Rowland Institute, Harvard University, 100 Edwin H. Land Boulevard, Cambridge, Massachusetts 02142, United States
| | - Joris van Slageren
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Katja Heinze
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
4
|
Kitzmann WR, Bertrams MS, Boden P, Fischer AC, Klauer R, Sutter J, Naumann R, Förster C, Niedner-Schatteburg G, Bings NH, Hunger J, Kerzig C, Heinze K. Stable Molybdenum(0) Carbonyl Complex for Upconversion and Photoredox Catalysis. J Am Chem Soc 2023. [PMID: 37478053 DOI: 10.1021/jacs.3c03832] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Photoactive complexes with earth-abundant metals have attracted increasing interest in the recent years fueled by the promise of sustainable photochemistry. However, sophisticated ligands with complicated syntheses are oftentimes required to enable photoactivity with nonprecious metals. Here, we combine a cheap metal with simple ligands to easily access a photoactive complex. Specifically, we synthesize the molybdenum(0) carbonyl complex Mo(CO)3(tpe) featuring the tripodal ligand 1,1,1-tris(pyrid-2-yl)ethane (tpe) in two steps with a high overall yield. The complex shows intense deep-red phosphorescence with excited state lifetimes of several hundred nanoseconds. Time-resolved infrared spectroscopy and laser flash photolysis reveal a triplet metal-to-ligand charge-transfer (3MLCT) state as the lowest excited state. Temperature-dependent luminescence complemented by density functional theory (DFT) calculations suggest thermal deactivation of the 3MLCT state via higher lying metal-centered states in analogy to the well-known photophysics of [Ru(bpy)3]2+. Importantly, we found that the title compound is very photostable due to the lack of labilized Mo-CO bonds (as caused by trans-coordinated CO) in the facial configuration of the ligands. Finally, we show the versatility of the molybdenum(0) complex in two applications: (1) green-to-blue photon upconversion via a triplet-triplet annihilation mechanism and (2) photoredox catalysis for a green-light-driven dehalogenation reaction. Overall, our results establish tripodal carbonyl complexes as a promising design strategy to access stable photoactive complexes of nonprecious metals avoiding tedious multistep syntheses.
Collapse
Affiliation(s)
- Winald R Kitzmann
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Maria-Sophie Bertrams
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Pit Boden
- Department of Chemistry and State Research Center OPTIMAS, RPTU Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern-Landau, Germany
| | - Alexander C Fischer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - René Klauer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Johannes Sutter
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Robert Naumann
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Christoph Förster
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Gereon Niedner-Schatteburg
- Department of Chemistry and State Research Center OPTIMAS, RPTU Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern-Landau, Germany
| | - Nicolas H Bings
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Johannes Hunger
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Christoph Kerzig
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Katja Heinze
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
5
|
Sinha N, Wenger OS. Photoactive Metal-to-Ligand Charge Transfer Excited States in 3d 6 Complexes with Cr 0, Mn I, Fe II, and Co III. J Am Chem Soc 2023; 145:4903-4920. [PMID: 36808978 PMCID: PMC9999427 DOI: 10.1021/jacs.2c13432] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Many coordination complexes and organometallic compounds with the 4d6 and 5d6 valence electron configurations have outstanding photophysical and photochemical properties, which stem from metal-to-ligand charge transfer (MLCT) excited states. This substance class makes extensive use of the most precious and least abundant metal elements, and consequently there has been a long-standing interest in first-row transition metal compounds with photoactive MLCT states. Semiprecious copper(I) with its completely filled 3d subshell is a relatively straightforward and well explored case, but in 3d6 complexes the partially filled d-orbitals lead to energetically low-lying metal-centered (MC) states that can cause undesirably fast MLCT excited state deactivation. Herein, we discuss recent advances made with isoelectronic Cr0, MnI, FeII, and CoIII compounds, for which long-lived MLCT states have become accessible over the past five years. Furthermore, we discuss possible future developments in the search for new first-row transition metal complexes with partially filled 3d subshells and photoactive MLCT states for next-generation applications in photophysics and photochemistry.
Collapse
Affiliation(s)
- Narayan Sinha
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
6
|
Dorn M, Hunger D, Förster C, Naumann R, van Slageren J, Heinze K. Towards Luminescent Vanadium(II) Complexes with Slow Magnetic Relaxation and Quantum Coherence. Chemistry 2023; 29:e202202898. [PMID: 36345821 PMCID: PMC10107508 DOI: 10.1002/chem.202202898] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
Abstract
Molecular entities with doublet or triplet ground states find increasing interest as potential molecular quantum bits (qubits). Complexes with higher multiplicity might even function as qudits and serve to encode further quantum bits. Vanadium(II) ions in octahedral ligand fields with quartet ground states and small zero-field splittings qualify as qubits with optical read out thanks to potentially luminescent spin-flip states. We identified two V2+ complexes [V(ddpd)2 ]2+ with the strong field ligand N,N'-dimethyl-N,N'-dipyridine-2-yl-pyridine-2,6-diamine (ddpd) in two isomeric forms (cis-fac and mer) as suitable candidates. The energy gaps between the two lowest Kramers doublets amount to 0.2 and 0.5 cm-1 allowing pulsed EPR experiments at conventional Q-band frequencies (35 GHz). Both isomers possess spin-lattice relaxation times T1 of around 300 μs and a phase memory time TM of around 1 μs at 5 K. Furthermore, the mer isomer displays slow magnetic relaxation in an applied field of 400 mT. While the vanadium(III) complexes [V(ddpd)2 ]3+ are emissive in the near-IR-II region, the [V(ddpd)2 ]2+ complexes are non-luminescent due to metal-to-ligand charge transfer admixture to the spin-flip states.
Collapse
Affiliation(s)
- Matthias Dorn
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany
| | - David Hunger
- Institute of Physical Chemistry and Center for, Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Christoph Förster
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Robert Naumann
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Joris van Slageren
- Institute of Physical Chemistry and Center for, Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Katja Heinze
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
7
|
Zobel JP, Radatz H, González L. Photodynamics of the Molecular Ruby [Cr(ddpd) 2] 3. Molecules 2023; 28:molecules28041668. [PMID: 36838661 PMCID: PMC9968007 DOI: 10.3390/molecules28041668] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
The introduction of strong-field ligands can enable luminescence in first-row transition-metal complexes. In this way, earth-abundant near-infrared emitters can be obtained using early 3d metals. A prime example is the molecular ruby [Cr(ddpd)2]3+ (ddpd = N,N'-dimethyl-N,N'-dipyridin-2-ylpyridine-2,6-diamine) that can achieve high phosphorescence quantum yields at room temperature in aqueous solution. To understand these remarkable properties, here, we simulate its photodynamics in water using trajectory surface hopping on linear vibronic coupling potentials parametrized from multiconfigurational CASSCF/CASPT2 calculations. We find that after excitation to the second absorption band, a relaxation cascade through metal-centered states occurs. After an initial back-and-forth intersystem crossing with higher-lying doublet states, the complex relaxes through a manifold of quartet metal-centered states to the low-lying doublet metal-centered states which are responsible for the experimentally observed emission. These electronic processes are driven by an elongation of the Cr-ligand bond lengths as well as the twisting motion of the trans-coordinated pyridine units in the ddpd ligands. The low-lying doublet states are reached within 1-2 ps and are close in geometry to the doublet minima, thus explaining the high phosphorescence quantum yield of the molecular ruby [Cr(ddpd)2]3+.
Collapse
|
8
|
Kübler J, Pfund B, Wenger OS. Zinc(II) Complexes with Triplet Charge-Transfer Excited States Enabling Energy-Transfer Catalysis, Photoinduced Electron Transfer, and Upconversion. JACS AU 2022; 2:2367-2380. [PMID: 36311829 PMCID: PMC9597861 DOI: 10.1021/jacsau.2c00442] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 05/28/2023]
Abstract
Many CuI complexes have luminescent triplet charge-transfer excited states with diverse applications in photophysics and photochemistry, but for isoelectronic ZnII compounds, this behavior is much less common, and they typically only show ligand-based fluorescence from singlet π-π* states. We report two closely related tetrahedral ZnII compounds, in which intersystem crossing occurs with appreciable quantum yields and leads to the population of triplet excited states with intraligand charge-transfer (ILCT) character. In addition to showing fluorescence from their initially excited 1ILCT states, these new compounds therefore undergo triplet-triplet energy transfer (TTET) from their 3ILCT states and consequently can act as sensitizers for photo-isomerization reactions and triplet-triplet annihilation upconversion from the blue to the ultraviolet spectral range. The photoactive 3ILCT state furthermore facilitates photoinduced electron transfer. Collectively, our findings demonstrate that mononuclear ZnII compounds with photophysical and photochemical properties reminiscent of well-known CuI complexes are accessible with suitable ligands and that they are potentially amenable to many different applications. Our insights seem relevant in the greater context of obtaining photoactive compounds based on abundant transition metals, complementing well-known precious-metal-based luminophores and photosensitizers.
Collapse
|
9
|
Ossinger S, Prescimone A, Häussinger D, Wenger OS. Manganese(I) Complex with Monodentate Arylisocyanide Ligands Shows Photodissociation Instead of Luminescence. Inorg Chem 2022; 61:10533-10547. [PMID: 35768069 PMCID: PMC9377510 DOI: 10.1021/acs.inorgchem.2c01438] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently reported manganese(I) complexes with chelating arylisocyanide ligands exhibit luminescent metal-to-ligand charge-transfer (MLCT) excited states, similar to ruthenium(II) polypyridine complexes with the same d6 valence electron configuration used for many different applications in photophysics and photochemistry. However, chelating arylisocyanide ligands require substantial synthetic effort, and therefore it seemed attractive to explore the possibility of using more readily accessible monodentate arylisocyanides instead. Here, we synthesized the new Mn(I) complex [Mn(CNdippPhOMe2)6]PF6 with the known ligand CNdippPhOMe2 = 4-(3,5-dimethoxyphenyl)-2,6-diisopropylphenylisocyanide. This complex was investigated by NMR spectroscopy, single-crystal structure analysis, high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) measurements, IR spectroscopy supported by density functional theory (DFT) calculations, cyclic voltammetry, and time-resolved as well as steady-state UV-vis absorption spectroscopy. The key finding is that the new Mn(I) complex is nonluminescent and instead undergoes arylisocyanide ligand loss during continuous visible laser irradiation into ligand-centered and charge-transfer absorption bands, presumably owed to the population of dissociative d-d excited states. Thus, it seems that chelating bi- or tridentate binding motifs are essential for obtaining emissive MLCT excited states in manganese(I) arylisocyanides. Our work contributes to understanding the basic properties of photoactive first-row transition metal complexes and could help advance the search for alternatives to precious metal-based luminophores, photocatalysts, and sensors.
Collapse
Affiliation(s)
- Sascha Ossinger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Alessandro Prescimone
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Daniel Häussinger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S. Wenger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
10
|
Luminescent Metal Complexes for Bioassays in the Near-Infrared (NIR) Region. Top Curr Chem (Cham) 2022; 380:31. [PMID: 35715540 DOI: 10.1007/s41061-022-00386-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/14/2022] [Indexed: 10/18/2022]
Abstract
Near-infrared (NIR, 700-1700 nm) luminescent imaging is an emerging bioimaging technology with low photon scattering, minimal autofluorescence, deep tissue penetration, and high spatiotemporal resolution that has shown fascinating promise for NIR imaging-guided theranostics. In recent progress, NIR luminescent metal complexes have attracted substantially increased research attention owing to their intrinsic merits, including small size, anti-photobleaching, long lifetime, and metal-centered NIR emission. In the past decade, scientists have contributed to the advancement of NIR metal complexes involving efforts to improve photophysical properties, biocompatibility, specificity, pharmacokinetics, in vivo visualization, and attempts to exploit new ligand platforms. Herein, we summarize recent progress and provide future perspectives for NIR metal complexes, including d-block transition metals and f-block lanthanides (Ln) as NIR optical molecular probes for bioassays.
Collapse
|
11
|
Herr P, Schwab A, Kupfer S, Wenger OS. Deep‐Red Luminescent Molybdenum(0) Complexes with Bi‐ and Tridentate Isocyanide Chelate Ligands. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Patrick Herr
- University of Basel: Universitat Basel Department of Chemistry SWITZERLAND
| | - Alexander Schwab
- Friedrich-Schiller-Universität Jena: Friedrich-Schiller-Universitat Jena Institute of Physical Chemistry GERMANY
| | - Stephan Kupfer
- Friedrich-Schiller-Universität Jena: Friedrich-Schiller-Universitat Jena Institute of Physical Chemistry GERMANY
| | - Oliver S. Wenger
- Universität Basel Departement für Chemie St. Johanns-Ring 19 4056 Basel SWITZERLAND
| |
Collapse
|
12
|
Joyce JP, Portillo RI, Rappé AK, Shores MP. Doublet Ground State in a Vanadium(II) Complex: Redox and Coordinative Noninnocence of Tripodal Ligand Architecture. Inorg Chem 2022; 61:6376-6391. [DOI: 10.1021/acs.inorgchem.1c03418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Justin P. Joyce
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Romeo I. Portillo
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Anthony K. Rappé
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Matthew P. Shores
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
13
|
Abstract
In molecular photochemistry, charge-transfer emission is well understood and widely exploited. In contrast, luminescent metal-centered transitions only came into focus in recent years. This gave rise to strongly phosphorescent CrIII complexes with a d3 electronic configuration featuring luminescent metal-centered excited states which are characterized by the flip of a single spin. These so-called spin-flip emitters possess unique properties and require different design strategies than traditional charge-transfer phosphors. In this review, we give a brief introduction to ligand field theory as a framework to understand this phenomenon and outline prerequisites for efficient spin-flip emission including ligand field strength, symmetry, intersystem crossing and common deactivation pathways using CrIII complexes as instructive examples. The recent progress and associated challenges of tuning the energies of emissive excited states and of emerging applications of the unique photophysical properties of spin-flip emitters are discussed. Finally, we summarize the current state-of-the-art and challenges of spin-flip emitters beyond CrIII with d2, d3, d4 and d8 electronic configuration, where we mainly cover pseudooctahedral molecular complexes of V, Mo, W, Mn, Re and Ni, and highlight possible future research opportunities.
Collapse
|
14
|
Schmid L, Glaser F, Schaer R, Wenger OS. High Triplet Energy Iridium(III) Isocyanoborato Complex for Photochemical Upconversion, Photoredox and Energy Transfer Catalysis. J Am Chem Soc 2022; 144:963-976. [PMID: 34985882 DOI: 10.1021/jacs.1c11667] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyclometalated Ir(III) complexes are often chosen as catalysts for challenging photoredox and triplet-triplet-energy-transfer (TTET) catalyzed reactions, and they are of interest for upconversion into the ultraviolet spectral range. However, the triplet energies of commonly employed Ir(III) photosensitizers are typically limited to values around 2.5-2.75 eV. Here, we report on a new Ir(III) luminophore, with an unusually high triplet energy near 3.0 eV owing to the modification of a previously reported Ir(III) complex with isocyanoborato ligands. Compared to a nonborylated cyanido precursor complex, the introduction of B(C6F5)3 units in the second coordination sphere results in substantially improved photophysical properties, in particular a high luminescence quantum yield (0.87) and a long excited-state lifetime (13.0 μs), in addition to the high triplet energy. These favorable properties (including good long-term photostability) facilitate exceptionally challenging organic triplet photoreactions and (sensitized) triplet-triplet annihilation upconversion to a fluorescent singlet excited state beyond 4 eV, unusually deep in the ultraviolet region. The new Ir(III) complex photocatalyzes a sigmatropic shift and [2 + 2] cycloaddition reactions that are unattainable with common transition metal-based photosensitizers. In the presence of a sacrificial electron donor, it furthermore is applicable to demanding photoreductions, including dehalogenations, detosylations, and the degradation of a lignin model substrate. Our study demonstrates how rational ligand design of transition-metal complexes (including underexplored second coordination sphere effects) can be used to enhance their photophysical properties and thereby broaden their application potential in solar energy conversion and synthetic photochemistry.
Collapse
Affiliation(s)
- Lucius Schmid
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Felix Glaser
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Raoul Schaer
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
15
|
Kitzmann WRR, Ramanan C, Naumann R, Heinze K. Molecular Ruby: Exploring the Excited State Landscape. Dalton Trans 2022; 51:6519-6525. [DOI: 10.1039/d2dt00569g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The discovery of the highly NIR-luminescent Molecular Ruby [Cr(ddpd)2]3+ 13+ (ddpd = N,N’-dimethyl-N,N’-dipyridine-2-ylpyridine-2,6-diamine) has been a milestone in the development of earth-abundant luminophors and has led to important new impulses...
Collapse
|
16
|
Dierks P, Vukadinovic Y, Bauer M. Photoactive iron complexes: more sustainable, but still a challenge. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01112j] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
With the “Criticality Score” used as a benchmark for sustainability – potentials, strategies and challenges are discussed to replace noble metal compounds in photosensitizers by the sustainable alternative iron.
Collapse
Affiliation(s)
- Philipp Dierks
- Faculty of Science, Chemistry Department and Center for Sustainable Systems Design, Paderborn University, 33098 Paderborn, Germany
| | - Yannik Vukadinovic
- Faculty of Science, Chemistry Department and Center for Sustainable Systems Design, Paderborn University, 33098 Paderborn, Germany
| | - Matthias Bauer
- Faculty of Science, Chemistry Department and Center for Sustainable Systems Design, Paderborn University, 33098 Paderborn, Germany
| |
Collapse
|
17
|
Wegeberg C, Wenger OS. Luminescent First-Row Transition Metal Complexes. JACS AU 2021; 1:1860-1876. [PMID: 34841405 PMCID: PMC8611671 DOI: 10.1021/jacsau.1c00353] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Indexed: 05/25/2023]
Abstract
Precious and rare elements have traditionally dominated inorganic photophysics and photochemistry, but now we are witnessing a paradigm shift toward cheaper and more abundant metals. Even though emissive complexes based on selected first-row transition metals have long been known, recent conceptual breakthroughs revealed that a much broader range of elements in different oxidation states are useable for this purpose. Coordination compounds of V, Cr, Mn, Fe, Co, Ni, and Cu now show electronically excited states with unexpected reactivity and photoluminescence behavior. Aside from providing a compact survey of the recent conceptual key advances in this dynamic field, our Perspective identifies the main design strategies that enabled the discovery of fundamentally new types of 3d-metal-based luminophores and photosensitizers operating in solution at room temperature.
Collapse
|
18
|
Coffey B, Clough L, Bartkus DD, McClellan IC, Greenberg MW, LaFratta CN, Tanski JM, Anderson CM. Photophysical Properties of Cyclometalated Platinum(II) Diphosphine Compounds in the Solid State and in PMMA Films. ACS OMEGA 2021; 6:28316-28325. [PMID: 34723028 PMCID: PMC8552474 DOI: 10.1021/acsomega.1c04509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/04/2021] [Indexed: 05/06/2023]
Abstract
Platinum(II) compounds were synthesized with both chelate cyclometalated ligands and chelate diphosphine ligands. The cyclometalated ligands include phenylpyridine and a benzothiophene-containing ligand. The three new benzothiophene compounds were characterized by nuclear magnetic resonance (NMR) spectroscopy, high-resolution mass spectrometry (HR-MS), and photophysical measurements. In the case of one compound, L1-DPPM, the structure was determined by single crystal X-ray diffraction. The structural coherence of the noncrystalline emissive solid state was measured by X-ray total scattering real space pair distribution function analysis. Quantum yield values of all of the platinum compounds measured in the solid state and in PMMA films were much greater than in solution.
Collapse
Affiliation(s)
- Belle Coffey
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, New York 12504, United States
| | - Lily Clough
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, New York 12504, United States
| | - Daphne D. Bartkus
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, New York 12504, United States
| | - Ian C. McClellan
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, New York 12504, United States
| | - Matthew W. Greenberg
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, New York 12504, United States
| | - Christopher N. LaFratta
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, New York 12504, United States
| | - Joseph M. Tanski
- Department
of Chemistry, Vassar College, Poughkeepsie, New York 12604, United States
| | - Craig M. Anderson
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, New York 12504, United States
| |
Collapse
|
19
|
London HC, Whittemore TJ, Gale AG, McMillen CD, Pritchett DY, Myers AR, Thomas HD, Shields GC, Wagenknecht PS. Ligand-to-Metal Charge-Transfer Photophysics and Photochemistry of Emissive d 0 Titanocenes: A Spectroscopic and Computational Investigation. Inorg Chem 2021; 60:14399-14409. [PMID: 34495657 DOI: 10.1021/acs.inorgchem.1c02182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Complexes with ligand-to-metal charge-transfer (LMCT) excited states involving d0 metals represent a new design for photocatalysts. Herein, the photochemistry and photophysics of d0 titanocenes of the type Cp2Ti(C2R)2, where C2R = ethynylphenyl (C2Ph), 4-ethynyldimethylaniline (C2DMA), or 4-ethynyltriphenylamine (C2TPA), have been investigated. Cp2Ti(C2Ph)2 and Cp2Ti(C2DMA)2 have also been characterized by single-crystal X-ray diffraction. The two aryl rings in Cp2Ti(C2DMA)2 are nearly face-to-face in the solid state, whereas they are mutually perpendicular for Cp2Ti(C2Ph)2. All three complexes are brightly emissive at 77 K but photodecompose at room temperature when irradiated into their lowest-energy absorption band. The emission wavelengths and photodecomposition quantum yields are as follows: Cp2Ti(C2Ph)2, 575 nm and 0.65; Cp2Ti(C2TPA)2, 642 nm and 0.42; Cp2Ti(C2DMA)2, 672 nm and 0.25. Extensive benchmarking of the density functional theory (DFT) model against the structural data and of the time-dependent DFT (TDDFT) model against the absorption and emission data was performed using combinations of 13 different functionals and 4 basis sets. The model that predicted the absorption and emission data with the greatest fidelity utilized MN15/LANL2DZ for both the DFT optimization and the TDDFT. Computational analysis shows that absorption involves a transition to a 1LMCT state. Whereas the spectroscopic data for Cp2Ti(C2TPA)2 and Cp2Ti(C2DMA)2 are well modeled using the optimized structure of these complexes, Cp2Ti(C2Ph)2 required averaging of the spectra from multiple rotamers involving rotation of the Ph rings. Consistent with this finding, an energy scan of all rotamers showed a very flat energetic surface, with less than 1.3 kcal/mol separating the minimum and maximum. The computational data suggest that emission occurs from a 3LMCT state. Optimization of the 3LMCT state demonstrates compression of the C-Ti-C bond angle, consistent with the known products of photodecomposition.
Collapse
Affiliation(s)
- Henry C London
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Thomas J Whittemore
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Ariel G Gale
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Colin D McMillen
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - David Y Pritchett
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Alexis R Myers
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Hannah D Thomas
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - George C Shields
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Paul S Wagenknecht
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| |
Collapse
|
20
|
Zobel JP, Knoll T, González L. Ultrafast and long-time excited state kinetics of an NIR-emissive vanadium(iii) complex II. Elucidating triplet-to-singlet excited-state dynamics. Chem Sci 2021; 12:10791-10801. [PMID: 34476060 PMCID: PMC8372553 DOI: 10.1039/d1sc02149d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 05/25/2021] [Indexed: 11/21/2022] Open
Abstract
We report the non-adiabatic dynamics of VIIICl3(ddpd), a complex based on the Earth-abundant first-row transition metal vanadium with a d2 electronic configuration which is able to emit phosphorescence in solution in the near-infrared spectral region. Trajectory surface-hopping dynamics based on linear vibronic coupling potentials obtained with CASSCF provide molecular-level insights into the intersystem crossing from triplet to singlet metal-centered states. While the majority of the singlet population undergoes back-intersystem crossing to the triplet manifold, 1-2% remains stable during the 10 ps simulation time, enabling the phosphorescence described in Dorn et al. Chem. Sci., 2021, DOI: 10.1039/D1SC02137K. Competing with intersystem crossing, two different relaxation channels via internal conversion through the triplet manifold occur. The nuclear motion that drives the dynamics through the different electronic states corresponds mainly to the increase of all metal-ligand bond distances as well as the decrease of the angles of trans-coordinated ligand atoms. Both motions lead to a decrease in the ligand-field splitting, which stabilizes the interconfigurational excited states populated during the dynamics. Analysis of the electronic character of the states reveals that increasing and stabilizing the singlet population, which in turn can result in enhanced phosphorescence, could be accomplished by further increasing the ligand-field strength.
Collapse
Affiliation(s)
- J Patrick Zobel
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna Währingerstr. 19 1090 Vienna Austria
| | - Thomas Knoll
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna Währingerstr. 19 1090 Vienna Austria
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna Währingerstr. 19 1090 Vienna Austria
- Vienna Research Platform on Accelerating Photoreaction Discovery, University of Vienna Währingerstr. 19 1090 Vienna Austria
| |
Collapse
|