Masese T, Kanyolo GM, Miyazaki Y, Ito M, Taguchi N, Rizell J, Tachibana S, Tada K, Huang Z, Alshehabi A, Ubukata H, Kubota K, Yoshii K, Senoh H, Tassel C, Orikasa Y, Kageyama H, Saito T. Honeycomb-Layered Oxides With Silver Atom Bilayers and Emergence of Non-Abelian SU(2) Interactions.
ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023;
10:e2204672. [PMID:
36575151 PMCID:
PMC9951339 DOI:
10.1002/advs.202204672]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Honeycomb-layered oxides with monovalent or divalent, monolayered cationic lattices generally exhibit myriad crystalline features encompassing rich electrochemistry, geometries, and disorders, which particularly places them as attractive material candidates for next-generation energy storage applications. Herein, global honeycomb-layered oxide compositions, Ag2 M2 TeO6 (M = Ni , Mg , etc $M = \rm Ni, Mg, etc$ .) exhibiting Ag $\rm Ag$ atom bilayers with sub-valent states within Ag-rich crystalline domains of Ag6 M2 TeO6 and Ag $\rm Ag$ -deficient domains ofAg 2 - x Ni 2 TeO 6 ${\rm Ag}_{2 - x}\rm Ni_2TeO_6$ (0 < x < 2 $0 < x < 2$ ). The Ag $\rm Ag$ -rich material characterized by aberration-corrected transmission electron microscopy reveals local atomic structural disorders characterized by aperiodic stacking and incoherency in the bilayer arrangement of Ag $\rm Ag$ atoms. Meanwhile, the global material not only displays high ionic conductivity but also manifests oxygen-hole electrochemistry during silver-ion extraction. Within the Ag $\rm Ag$ -rich domains, the bilayered structure, argentophilic interactions therein and the expected Ag $\rm Ag$ sub-valent states (1 / 2 + , 2 / 3 + $1/2+, 2/3+$ , etc.) are theoretically understood via spontaneous symmetry breaking of SU(2)× U(1) gauge symmetry interactions amongst 3 degenerate mass-less chiral fermion states, justified by electron occupancy of silver4 d z 2 $4d_{z^2}$ and 5s orbitals on a bifurcated honeycomb lattice. This implies that bilayered frameworks have research applications that go beyond the confines of energy storage.
Collapse