1
|
Zhang H, Zhu T, Xu W, Liu B, Wu K, Yin Y, Zhang X. Detoxified pneumolysin derivative ΔA146Ply inhibits triple- negative breast cancer metastasis mainly via mannose receptor-mediated autophagy inhibition. Virulence 2024; 15:2283898. [PMID: 37964595 PMCID: PMC11441017 DOI: 10.1080/21505594.2023.2283898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/29/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
The detoxified pneumolysin derivative ΔA146Ply has been proven to have a direct anti-triple negative breast cancer effect by our group, but its work model remains unclear. In this study, we focused on its ability to inhibit triple-negative breast cancer metastasis. We found that ΔA146Ply suppressed the migration and invasion of triple-negative breast cancer cells by activating mannose receptor and toll-like receptor 4. Their activation triggers the activation of the mammalian target of rapamycin signalling, sequentially leading to autophagy, transforming growth factor-β1, and epithelial-mesenchymal transition inhibition. Furthermore, the combination of doxorubicin and ΔA146Ply significantly inhibited triple-negative breast cancer progression and prolonged survival in tumour-bearing mice. Taken together, our study provides an alternative microbiome-based mannose receptor-targeted therapy for triple-negative breast cancer and a novel theoretical and experimental basis for the downstream signalling pathway of the mannose receptor.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Laboratory Medicine, the Affiliated Hospital of North Sichuan Medical College; Department of Laboratory Medicine, North Sichuan Medical College; Translational Medicine Research Center, North Sichuan Medical College, Nanchong, China
| | - Tao Zhu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
- Department of Clinical Laboratory and Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Wenchun Xu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Bichen Liu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Kaifeng Wu
- Department of Laboratory Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, China
| | - Yibing Yin
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Xuemei Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Iannazzo D, Celesti C, Giofrè SV, Ettari R, Bitto A. Theranostic Applications of 2D Graphene-Based Materials for Solid Tumors Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2380. [PMID: 37630966 PMCID: PMC10459055 DOI: 10.3390/nano13162380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023]
Abstract
Solid tumors are a leading cause of cancer-related deaths globally, being characterized by rapid tumor growth and local and distant metastases. The failures encountered in cancer treatment are mainly related to the complicated biology of the tumor microenvironment. Nanoparticles-based (NPs) approaches have shown the potential to overcome the limitations caused by the pathophysiological features of solid cancers, enabling the development of multifunctional systems for cancer diagnosis and therapy and allowing effective inhibition of tumor growth. Among the different classes of NPs, 2D graphene-based nanomaterials (GBNs), due to their outstanding chemical and physical properties, easy surface multi-functionalization, near-infrared (NIR) light absorption and tunable biocompatibility, represent ideal nanoplatforms for the development of theranostic tools for the treatment of solid tumors. Here, we reviewed the most recent advances related to the synthesis of nano-systems based on graphene, graphene oxide (GO), reduced graphene oxide (rGO), and graphene quantum dots (GQDs), for the development of theranostic NPs to be used for photoacoustic imaging-guided photothermal-chemotherapy, photothermal (PTT) and photodynamic therapy (PDT), applied to solid tumors destruction. The advantages in using these nano-systems are here discussed for each class of GBNs, taking into consideration the different chemical properties and possibility of multi-functionalization, as well as biodistribution and toxicity aspects that represent a key challenge for their translation into clinical use.
Collapse
Affiliation(s)
- Daniela Iannazzo
- Department of Engineering, University of Messina, 98166 Messina, Italy;
| | - Consuelo Celesti
- Department of Engineering, University of Messina, 98166 Messina, Italy;
| | - Salvatore V. Giofrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, 98165 Messina, Italy; (S.V.G.); (R.E.)
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, 98165 Messina, Italy; (S.V.G.); (R.E.)
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
3
|
Zhang C, Chen S, Wang W, Gao Y. YY1 regulates the proliferation and invasion of triple-negative breast cancer via activating PLAUR. Funct Integr Genomics 2023; 23:269. [PMID: 37552345 DOI: 10.1007/s10142-023-01193-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/09/2023]
Abstract
It is well-established that breast cancer is a highly prevalent malignancy among women, emphasizing the need to investigate mechanisms underlying its pathogenesis and metastasis. In this study, the Gene Expression Omnibus (GEO) database was utilized to conduct differential expression analysis in breast cancer and adjacent tissues. Upregulated genes were selected for prognostic analysis of breast cancer. The expression of urokinase plasminogen activator receptor (uPAR), also known as PLAUR, was assessed using RT-qPCR and western blot. Immunofluorescence staining was employed to determine PLAUR localization. Various cellular processes were analyzed, including proliferation, migration, invasion, apoptosis, and cell cycle. Bioinformatics analysis was used to predict transcription factors of PLAUR, which were subsequently validated in a double luciferase reporter gene experiment. Rescue experiments confirmed the impact of PLAUR on the proliferation, apoptosis, and migration of MDA-MB-231 cells. Furthermore, the effects of PLAUR were evaluated in an orthotopic tumor transplantation and lung metastasis nude mouse model. Our findings substantiated the critical involvement of PLAUR in the progression of triple-negative breast cancer (TNBC) in vitro and among TNBC patients with a poor prognosis. Additionally, we demonstrated Yin Yang-1 (YY1) as a notable transcriptional regulator of PLAUR, whose activation could transcriptionally enhance the proliferation and invasion capabilities of TNBC cells. We also identified the downstream mechanism of PLAUR associated with PLAU, focal adhesion kinase (FAK), and AKT. Overall, these findings offer a novel perspective on PLAUR as a potential therapeutic target for TNBC.
Collapse
Affiliation(s)
- Chao Zhang
- The First Clinical College, Jinan University, Guangzhou, 510630, China
- Department of Oncology Surgery, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Longzihu Distract, Bengbu, 233004, Anhui, China
| | - Shiyuan Chen
- Department of Vascular Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Wei Wang
- Department of Oncology Surgery, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Yong Gao
- The First Clinical College, Jinan University, Guangzhou, 510630, China.
- Department of Vascular Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China.
| |
Collapse
|
4
|
Ye C, Zhang S, Zhang D, Shen Y, Wang Z, Wang H, Ren J, Jiang XD, Du J, Shang R, Wang G. Engineering J-aggregates for NIR-induced meso-CF3-BODIPY nanoparticles by activated apoptosis mechanism in photothermal therapy. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
5
|
Niu W, Ma J, Feng X. Precise Structural Regulation and Band-Gap Engineering of Curved Graphene Nanoribbons. Acc Chem Res 2022; 55:3322-3333. [PMID: 36378659 DOI: 10.1021/acs.accounts.2c00550] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Graphene nanoribbons (GNRs)─quasi-one-dimensional graphene cutouts─have drawn growing attention as promising candidates for next-generation electronic and spintronic materials. Theoretical and experimental studies have demonstrated that the electronic and magnetic properties of GNRs critically depend on their widths and edge topologies. Thus, the preparation of structurally defined GNRs is highly desirable not only for their fundamental physicochemical studies but also for their future technological development in carbon-based nanoelectronics. In the past decade, significant efforts have been made to construct a wide variety of GNRs with well-defined widths and edge structures via bottom-up synthesis. In addition to extensively studied planar GNRs consisting of armchair, zigzag, or gulf edges, curved GNRs (cGNRs) bearing cove ([4]helicene unit) or fjord ([5]helicene unit) regions along the ribbon edges have received increasing interest after we presented the first attempt to synthesize the fully cove-edged GNRs in 2015. Profiting from their novel edge topologies, cGNRs usually exhibit an unprecedented narrow band gap and high carrier transport mobility in comparison to the planar GNRs with similar widths. Moreover, cGNRs with particular out-of-plane-distorted structures are expected to provide further opportunities in nonlinear optics and asymmetric catalysis. However, the synthesis of cGNRs bearing cove or fjord edges remains underdeveloped due to the absence of efficient synthetic strategies/methods and suitable molecular precursor design.In this Account, we present the recent advances in the bottom-up synthesis and characterization of structurally defined cGNRs containing cove or fjord edges, mainly from our research group. First, the synthetic strategies toward cGNRs bearing cove edges are described, including the design of molecular monomers and polymer precursors as well as the corresponding polymerization methods, such as Ullmann coupling, Yamamoto coupling, A2B2-type Diels-Alder polymerization, followed by Scholl-type cyclodehydrogenation. The synthesis of typical model compounds is also described to support the understanding of the related cGNRs. In addition, the synthesis of cGNRs containing fjord edges from other research groups via the regioselective Scholl reaction, Hopf cyclization or regioselective photochemical cyclodehydrochlorination approach is presented. Second, we discuss the optoelectronic properties of the as-synthesized cGNRs and reveal the design principle to obtain cGNRs with high charge carrier mobilities. Finally, the challenges and prospects in the design and synthesis of cGNRs are offered. We anticipate that this Account will further stimulate the development of cGNRs through a collaborative effort between different disciplines.
Collapse
Affiliation(s)
- Wenhui Niu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany.,Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany.,Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
| |
Collapse
|
6
|
Tian H, Zhang T, Qin S, Huang Z, Zhou L, Shi J, Nice EC, Xie N, Huang C, Shen Z. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. J Hematol Oncol 2022; 15:132. [PMID: 36096856 PMCID: PMC9469622 DOI: 10.1186/s13045-022-01320-5] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022] Open
Abstract
Poor targeting of therapeutics leading to severe adverse effects on normal tissues is considered one of the obstacles in cancer therapy. To help overcome this, nanoscale drug delivery systems have provided an alternative avenue for improving the therapeutic potential of various agents and bioactive molecules through the enhanced permeability and retention (EPR) effect. Nanosystems with cancer-targeted ligands can achieve effective delivery to the tumor cells utilizing cell surface-specific receptors, the tumor vasculature and antigens with high accuracy and affinity. Additionally, stimuli-responsive nanoplatforms have also been considered as a promising and effective targeting strategy against tumors, as these nanoplatforms maintain their stealth feature under normal conditions, but upon homing in on cancerous lesions or their microenvironment, are responsive and release their cargoes. In this review, we comprehensively summarize the field of active targeting drug delivery systems and a number of stimuli-responsive release studies in the context of emerging nanoplatform development, and also discuss how this knowledge can contribute to further improvements in clinical practice.
Collapse
Affiliation(s)
- Hailong Tian
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Tingting Zhang
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jiayan Shi
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, VIC, Australia
| | - Edouard C Nice
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan university, Chengdu, 610041, China
| | - Na Xie
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China. .,West China School of Basic Medical Sciences and Forensic Medicine, Sichuan university, Chengdu, 610041, China.
| | - Canhua Huang
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.
| |
Collapse
|
7
|
Efficient starvation therapy with three-pathway blocking in combination with PTT/CDT for TME reversal and tumor apoptosis. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Advances in the Immunomodulatory Properties of Glycoantigens in Cancer. Cancers (Basel) 2022; 14:cancers14081854. [PMID: 35454762 PMCID: PMC9032556 DOI: 10.3390/cancers14081854] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/28/2022] Open
Abstract
Simple Summary This work reviews the role of aberrant glycosylation in cancer cells during tumour growth and spreading, as well as in immune evasion. The interaction of tumour-associated glycans with the immune system through C-type lectin receptors can favour immune escape but can also provide opportunities to develop novel tumour immunotherapy strategies. This work highlights the main findings in this area and spotlights the challenges that remain to be investigated. Abstract Aberrant glycosylation in tumour progression is currently a topic of main interest. Tumour-associated carbohydrate antigens (TACAs) are expressed in a wide variety of epithelial cancers, being both a diagnostic tool and a potential treatment target, as they have impact on patient outcome and disease progression. Glycans affect both tumour-cell biology properties as well as the antitumor immune response. It has been ascertained that TACAs affect cell migration, invasion and metastatic properties both when expressed by cancer cells or by their extracellular vesicles. On the other hand, tumour-associated glycans recognized by C-type lectin receptors in immune cells possess immunomodulatory properties which enable tumour growth and immune response evasion. Yet, much remains unknown, concerning mechanisms involved in deregulation of glycan synthesis and how this affects cell biology on a major level. This review summarises the main findings to date concerning how aberrant glycans influence tumour growth and immunity, their application in cancer treatment and spotlights of unanswered challenges remaining to be solved.
Collapse
|
9
|
Han G, Yang Y, Feng D, Liu J, Zhang L, Wei F, Qiao ZA. Interface and Charge Induced Molecular Self-assembly Strategy for the Synthesis of Reduced Graphene Oxide Coated with Mesoporous Platinum Sheets. Macromol Rapid Commun 2022; 43:e2100923. [PMID: 35134260 DOI: 10.1002/marc.202100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/26/2022] [Indexed: 11/12/2022]
Abstract
The design of porous noble metal catalysts holds great promise in various electrocatalytic applications. However, it is still a challenge to improve the durability performance through constructing stable framework. Here, we develop an interface and charge induced strategy to synthesize large-sized continuous reduced graphene oxide@mesoporous platinum (denoted as rGO@mPt) sheets under kinetic control by molecular self-assembly design. Graphene oxide (GO) is a promising large-sized growth interface for platinum. Cationic surfactant dioctadecyldimethylammonium chloride bridges the negatively charged GO and platinum precursors, while creating interconnected mesopores. The successful synthesis of rGO@mPt sheets relies on proper kinetic control, which is achieved by controlling pH, temperature and the complexation of bromide ions. rGO@mPt sheets present strong crystallinity with a pure face-centered cubic Pt phase. Worm-like mesostructures with an average pore size of 2.2 nm exist throughout the sheets. rGO@mPt sheets possess both stable framework and abundant active sites, which markedly improve the durability on methanol oxidation reaction (MOR) while maintaining relatively good catalytic activity. Long-term stability test shows a slight loss of 1.2% activity after 250 cycles. Amperometric i-t curves reveal the mass current three times higher compared to commercial Pt/C at 3000 s. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Gengxu Han
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Yan Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Danyang Feng
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Jingwei Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Ling Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Feng Wei
- Department of Hepatobiliary Pancreas Surgery, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Zhen-An Qiao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| |
Collapse
|
10
|
Zhou M, Gan HQ, Chen GR, James TD, Zhang B, Hu Q, Xu F, Hu XL, He XP, Mai Y. Near-Infrared Light-Triggered Bacterial Eradication Using a Nanowire Nanocomposite of Graphene Nanoribbons and Chitosan-Coated Silver Nanoparticles. Front Chem 2021; 9:767847. [PMID: 34778216 PMCID: PMC8579076 DOI: 10.3389/fchem.2021.767847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial infection is a major threat to human health. However, many antibacterial agents currently used are severely limited due to drug-resistance, and the development of side effects. Herein, we have developed a non-antibiotic nanocomposite consisting of chitosan (ChS) coated silver nanoparticles (AgNPs) and graphene nanoribbon (GNR)-based nanowires for light-triggered eradication of bacteria. The presence of AgNP/ChS significantly enhanced the interactions of the GNR nanowires with Pseudomonas aeruginosa, a clinically common Gram-negative bacterium. Which enables the highly effective photothermal eradication of bacteria by GNR upon near-infrared light irradiation. The nanocomposite was shown to be applicable for the light-triggered eradication of bacterial biofilms and the inhibition of bacterial growth on medical patches used for abdominal-wall hernia surgery.
Collapse
Affiliation(s)
- Ming Zhou
- Department of General Surgery, Shanghai Xuhui District Dahua Hospital, Shanghai, China
| | - Hui-Qi Gan
- Feringa Nobel Prize Scientist Joint Research Center, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Guo-Rong Chen
- Feringa Nobel Prize Scientist Joint Research Center, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, United Kingdom
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Bin Zhang
- Department of General Surgery, Shanghai Xuhui District Dahua Hospital, Shanghai, China
| | - Qiang Hu
- Department of General Surgery, Shanghai Xuhui District Dahua Hospital, Shanghai, China
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, China
| | - Xi-Le Hu
- Feringa Nobel Prize Scientist Joint Research Center, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiao-Peng He
- Feringa Nobel Prize Scientist Joint Research Center, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|