1
|
Wu S, Song X, Du C, Liu M. Macroscopic homochiral helicoids self-assembled via screw dislocations. Nat Commun 2024; 15:6233. [PMID: 39043750 PMCID: PMC11266591 DOI: 10.1038/s41467-024-50631-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
Chirality is a fundamental property in nature and is widely observed at hierarchical scales from subatomic, molecular, supramolecular to macroscopic and even galaxy. However, the transmission of chirality across different length scales and the expression of homochiral nano/microstructures remain challenging. Herein, we report the formation of macroscopic homochiral helicoids with ten micrometers from enantiomeric pyromellitic diimide-based molecular triangle (PMDI-Δ) and achiral pyrene via a screw dislocation-driven co-self-assembly. Chiral transfer and expression from molecular and supramolecular levels, to the macroscopic helicoids, is continuous and follows the molecular chirality of PMDI-Δ. Furthermore, the screw dislocation and chirality transfer lead to a unidirectional curvature of the helicoids, which exhibit excellent circularly polarized luminescence with large |glum| values up to 0.05. Our results demonstrate the formation of a homochiral macroscopic organic helicoid and function emergence from small molecules via screw dislocations, which deepens our understanding of chiral transfer and expression across different length scales.
Collapse
Affiliation(s)
- Shengfu Wu
- Beijing National Laboratory of Molecular Sciences (BNLMS) and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China
| | - Xin Song
- Beijing National Laboratory of Molecular Sciences (BNLMS) and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
| | - Cong Du
- Beijing National Laboratory of Molecular Sciences (BNLMS) and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
| | - Minghua Liu
- Beijing National Laboratory of Molecular Sciences (BNLMS) and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China.
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
2
|
Islam M, Basu S. Screw dislocation in a Rashba spin-orbit coupled α - T 3 Aharonov-Bohm quantum ring. Sci Rep 2024; 14:11232. [PMID: 38755231 PMCID: PMC11099126 DOI: 10.1038/s41598-024-61889-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
In this paper we investigate the effect of a topological defect, such as a screw dislocation in an α - T 3 Aharonov-Bohm quantum ring and scrutinized the effects of an external transverse magnetic field and Rashba spin-orbit coupling therein. The screw dislocation yields an effective flux which reshape the periodic oscillations in the persistent current in both charge and spin sectors, with a period equal to one flux quantum. Moreover, they suffer a phase shift proportional to the degree of dislocation, and include scattering effects due to the dislocation present in the system. Such tunable oscillation of the spin persistent current highlights applications of our system as potential spintronic devices. Further, the behaviour of the current induced by the Burgers vector ( b z ) which denotes the strength of the dislocation is investigated in the absence and presence of an external magnetic field. In both the scenarios, an almost linear decrease in the current profile as a function of the Burgers vector is observed. Notably, without the external magnetic field, the Burgers current suffers a back flow for α = 1 (dice lattice), while in the presence of the external magnetic field, for other values of α (e.g., α = 0.5 ) this back flow occurs for a specific value of b z . Additionally, the presence of the distortion induces a chirality effect, giving rise to an additional chiral current even in the absence of an external field. Furthermore, in the absence of field, the Burgers spin current initially rises, attains a maximum before diminishing as b z is enhance for all values of α . However, such a non-monotonicity in the Burgers spin current is conspicuously non-existent in the presence of an external field. The chiral current discussed above may hold important applications to spintronics.
Collapse
Affiliation(s)
- Mijanur Islam
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| | - Saurabh Basu
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| |
Collapse
|
3
|
Zhou Y, Luo J, Liu T, Wen T, Williams-Pavlantos K, Wesdemiotis C, Cheng SZD, Liu T. Molecular Geometry-Directed Self-Recognition in the Self-Assembly of Giant Amphiphiles. Macromol Rapid Commun 2023; 44:e2200216. [PMID: 35557023 DOI: 10.1002/marc.202200216] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/18/2022] [Indexed: 01/11/2023]
Abstract
Three sets of polyoxometalate (POM)-based amphiphilic hybrid macromolecules with different rigidity in their organic tails are used as models to understand the effect of molecular rigidity on their possible self-recognition feature during self-assembly processes. Self-recognition is achieved in the mixed solution of two structurally similar, sphere-rigid T-shape-linked oligofluorene(TOF4 ) rod amphiphiles, with the hydrophilic clusters being Anderson (Anderson-TOF4 ) and Dawson (Dawson-TOF4 ), respectively. Anderson-TOF4 is observed to self-assemble into onion-like multilayer structures and Dawson-TOF4 forms multilayer vesicles. The self-assembly is controlled by the interdigitation of hydrophobic rods and the counterion-mediated attraction among charged hydrophilic inorganic clusters. When the hydrophobic blocks are less rigid, e.g., partially rigid polystyrene and fully flexible alkyl chains, self-recognition is not observed, attributing to the flexible conformation of hydrophobic molecules in the solvophobic domain. This study reveals that the self-recognition among amphiphiles can be achieved by the geometrical limitation of the supramolecular structure due to the rigidity of solvophobic domains.
Collapse
Affiliation(s)
- Yifan Zhou
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Jiancheng Luo
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Tong Liu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Tao Wen
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, Guangdong, 50610, China
| | | | - Chrys Wesdemiotis
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA.,Department of Chemistry, The University of Akron, Akron, OH, 44325, USA
| | - Stephen Z D Cheng
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA.,South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, Guangdong, 50610, China
| | - Tianbo Liu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
| |
Collapse
|
4
|
Feng F, Shao Y, Wu W, Li X, Hong C, Jin L, Yue K, Zhang WB, Liu H. Crystallization of Precise Side-Chain Giant Molecules with Tunable Sequences and Functionalities. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Fengfeng Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Yu Shao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenjing Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Xiangqian Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Chengyang Hong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Liang Jin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Kan Yue
- South China Advanced Institute of Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hao Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| |
Collapse
|