1
|
Zheng FH, Cui ZH, Wang YX, Zhu WJ, Wei HM, Xue JH, Wan XC, Fang GM. Thiazolidine Deprotection Using an Organic Solvent Extractable Aldehyde Scavenger for One-Pot Four-Segment Ligation. Org Lett 2024; 26:7701-7706. [PMID: 39230191 DOI: 10.1021/acs.orglett.4c02816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
We report a simple and convenient N-terminal thiazolidine (Thz) deprotection strategy and its application in one-pot multisegment ligation. In this strategy, O-benzylhydroxylamine (O-BHA) is used to efficiently and rapidly convert Thz into N-terminal cysteine. O-BHA can be easily separated from the ligation buffer by organic solvent extraction, avoiding the degradation of the peptide thioester by O-BHA. The utility of the O-BHA-based one-pot ligation strategy has been demonstrated in the assembly of CC chemokine ligand-2.
Collapse
Affiliation(s)
- Feng-Hao Zheng
- School of Life Science, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Zhi-Hui Cui
- School of Life Science, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Yu-Xuan Wang
- School of Life Science, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Wen-Jing Zhu
- School of Life Science, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Hui-Min Wei
- School of Life Science, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Jun-Hao Xue
- School of Life Science, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Xiao-Cui Wan
- School of Life Science, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Ge-Min Fang
- School of Life Science, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
2
|
Wan XC, Zhu WJ, Chen Y, Cui ZH, Zhang H, Zheng FH, Zhang YN, Fang GM. Thioproline-Based Oxidation Strategy for Direct Preparation of N-Terminal Thiazolidine-Containing Peptide Thioesters from Peptide Hydrazides. Org Lett 2024; 26:5021-5026. [PMID: 38842216 DOI: 10.1021/acs.orglett.4c01687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
We describe a simple and robust oxidation strategy for preparing N-terminal thiazolidine-containing peptide thioesters from peptide hydrazides. We find for the first time that l-thioproline can be used as a protective agent to prevent the nitrosation of N-terminal thiazolidine during peptide hydrazide oxidation. The thioproline-based oxidation strategy has been successfully applied to the chemical synthesis of CC chemokine ligand-2 (69aa) and omniligase-C (113aa), thereby demonstrating its utility in hydrazide-based native chemical ligation.
Collapse
Affiliation(s)
- Xiao-Cui Wan
- School of Life Science, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Wen-Jing Zhu
- School of Life Science, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Ying Chen
- School of Life Science, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Zhi-Hui Cui
- School of Life Science, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Hua Zhang
- School of Life Science, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Feng-Hao Zheng
- School of Life Science, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Yan-Ni Zhang
- School of Life Science, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Ge-Min Fang
- School of Life Science, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
3
|
Mackay AS, Maxwell JWC, Bedding MJ, Kulkarni SS, Byrne SA, Kambanis L, Popescu MV, Paton RS, Malins LR, Ashhurst AS, Corcilius L, Payne RJ. Electrochemical Modification of Polypeptides at Selenocysteine. Angew Chem Int Ed Engl 2023; 62:e202313037. [PMID: 37818778 DOI: 10.1002/anie.202313037] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/13/2023]
Abstract
Mild strategies for the selective modification of peptides and proteins are in demand for applications in therapeutic peptide and protein discovery, and in the study of fundamental biomolecular processes. Herein, we describe the development of an electrochemical selenoetherification (e-SE) platform for the efficient site-selective functionalization of polypeptides. This methodology utilizes the unique reactivity of the 21st amino acid, selenocysteine, to effect formation of valuable bioconjugates through stable selenoether linkages under mild electrochemical conditions. The power of e-SE is highlighted through late-stage C-terminal modification of the FDA-approved cancer drug leuprolide and assembly of a library of anti-HER2 affibody conjugates bearing complex cargoes. Following assembly by e-SE, the utility of functionalized affibodies for in vitro imaging and targeting of HER2 positive breast and lung cancer cell lines is also demonstrated.
Collapse
Affiliation(s)
- Angus S Mackay
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Joshua W C Maxwell
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Max J Bedding
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sameer S Kulkarni
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Stephen A Byrne
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Lucas Kambanis
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Mihai V Popescu
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Robert S Paton
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Lara R Malins
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT 2601, Australia
| | - Anneliese S Ashhurst
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Leo Corcilius
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Xie XL, Qi JZ, Wan XC, Zhang SD, Zhang YN, Fang GM. Chemical Synthesis of Proteins Using an o-Nitrobenzyl Group as a Robust Temporary Protective Group for N-Terminal Cysteine Protection. Org Lett 2023; 25:3435-3439. [PMID: 37144961 DOI: 10.1021/acs.orglett.3c00998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We report here a robust and practical strategy for chemical protein synthesis using an o-nitrobenzyl group as a temporary protective group for an N-terminal cysteine residue of intermediate hydrazide fragments. By reinvestigating the photoremoval of an o-nitrobenzyl group, we establish a robust and reliable strategy for its quantitative photodeprotection. The o-nitrobenzyl group is completely stable to oxidative NaNO2 treatment and has been applied to the convergent chemical synthesis of programmed death ligand 1 fragment, providing a practical avenue for hydrazide-based native chemical ligation.
Collapse
Affiliation(s)
- Xiao-Lei Xie
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| | - Jing-Ze Qi
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| | - Xiao-Cui Wan
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| | - Suo-De Zhang
- Hefei KS-V Peptide Biological Technology Co., Ltd., Hefei 230031, P.R. China
| | - Yan-Ni Zhang
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| | - Ge-Min Fang
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| |
Collapse
|
5
|
Harel O, Jbara M. Chemical Synthesis of Bioactive Proteins. Angew Chem Int Ed Engl 2023; 62:e202217716. [PMID: 36661212 DOI: 10.1002/anie.202217716] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/21/2023]
Abstract
Nature has developed a plethora of protein machinery to operate and maintain nearly every task of cellular life. These processes are tightly regulated via post-expression modifications-transformations that modulate intracellular protein synthesis, folding, and activation. Methods to prepare homogeneously and precisely modified proteins are essential to probe their function and design new bioactive modalities. Synthetic chemistry has contributed remarkably to protein science by allowing the preparation of novel biomacromolecules that are often challenging or impractical to prepare via common biological means. The ability to chemically build and precisely modify proteins has enabled the production of new molecules with novel physicochemical properties and programmed activity for biomedical research, diagnostic, and therapeutic applications. This minireview summarizes recent developments in chemical protein synthesis to produce bioactive proteins, with emphasis on novel analogs with promising in vitro and in vivo activity.
Collapse
Affiliation(s)
- Omer Harel
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Muhammad Jbara
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
6
|
Gan X, Wu S, Geng F, Dong J, Zhou Y. Photocatalytic C–H alkylation of coumarins mediated by triphenylphosphine and sodium iodide. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
7
|
Bedding MJ, Kulkarni SS, Payne RJ. Diselenide-selenoester ligation in the chemical synthesis of proteins. Methods Enzymol 2022; 662:363-399. [PMID: 35101218 DOI: 10.1016/bs.mie.2021.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Peptides and proteins represent an important class of biomolecules responsible for a plethora of structural and functional roles in vivo. Following their translation on the ribosome, the majority of eukaryotic proteins are post-translationally modified, leading to a proteome that is much larger than the number of genes present in a given organism. In order to understand the functional role of a given protein modification, it is necessary to access peptides and proteins bearing homogeneous and site-specific modifications. Accordingly, there has been significant research effort centered on the development of peptide ligation methodologies for the chemical synthesis of modified proteins. In this chapter we outline the discovery and development of a contemporary methodology called the diselenide-selenoester ligation (DSL) that enables the rapid and efficient fusion of peptide fragments to generate synthetic proteins. The practical aspects of using DSL for the preparation of chemically modified peptides and proteins in the laboratory is described. In addition, recent advances in the application of the methodology are outlined, exemplified by the synthesis and biological evaluation of a number of complex protein targets.
Collapse
Affiliation(s)
- Max J Bedding
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Camperdown, NSW, Australia
| | - Sameer S Kulkarni
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Camperdown, NSW, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
8
|
Wang S, Zhou Q, Li Y, Wei B, Liu X, Zhao J, Ye F, Zhou Z, Ding B, Wang P. Quinoline-Based Photolabile Protection Strategy Facilitates Efficient Protein Assembly. J Am Chem Soc 2022; 144:1232-1242. [PMID: 35034454 DOI: 10.1021/jacs.1c10324] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Native chemical ligation (NCL) provides a powerful solution to assemble proteins with precise chemical features, which enables a detailed investigation of the protein structure-function relationship. As an extension to NCL, the discovery of desulfurization and expressed protein ligation (EPL) techniques has greatly expanded the efficient access to large or challenging protein sequences via chemical ligations. Despite its superior reliability, the NCL-desulfurization protocol requires orthogonal protection strategies to allow selective desulfurization in the presence of native Cys, which is crucial to its synthetic application. In contrast to traditional thiol protecting groups, photolabile protecting groups (PPGs), which are removed upon irradiation, simplify protein assembly and therefore provide minimal perturbation to the peptide scaffold. However, current PPG strategies are mainly limited to nitro-benzyl derivatives, which are incompatible with NCL-desulfurization. Herein, we present for the first time that quinoline-based PPG for cysteine can facilitate various ligation strategies, including iterative NCL and EPL-desulfurization methods. 7-(Piperazin-1-yl)-2-(methyl)quinolinyl (PPZQ) caging of multiple cysteine residues within the protein sequence can be readily introduced via late-stage modification, while the traceless removal of PPZQ is highly efficient via photolysis in an aqueous buffer. In addition, the PPZQ group is compatible with radical desulfurization. The efficiency of this strategy has been highlighted by the synthesis of γ-synuclein and phosphorylated cystatin-S via one-pot iterative ligation and EPL-desulfurization methods. Besides, successful sextuple protection and deprotection of the expressed Interleukin-34 fragment demonstrate the great potential of this strategy in protein caging/uncaging investigations.
Collapse
Affiliation(s)
- Siyao Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qingqing Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yunxue Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Bingcheng Wei
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xinliang Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jie Zhao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Farong Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhongneng Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Bei Ding
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
9
|
Kambanis L, Kulkarni SS, Payne RJ. Side-Chain Anchoring Strategies for the Synthesis of Peptide Thioesters and Selenoesters. Methods Mol Biol 2022; 2530:125-140. [PMID: 35761046 DOI: 10.1007/978-1-0716-2489-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Peptides bearing C-terminal thioester and selenoester functionalities are essential precursors for the chemical synthesis of larger proteins using ligation chemistry, including native chemical ligation (NCL) and diselenide-selenoester ligation (DSL). The use of a side-chain anchoring thioesterification or selenoesterification approach offers a robust method to access peptide thioesters or peptide selenoesters in excellent yields and in high purity. Importantly, this methodology overcomes solubility issues and epimerization of the C-terminal amino acid residue that can occur using solution-phase approaches. Detailed methods for the solid-phase synthesis of peptide thioesters and selenoesters using a side-chain anchoring approach are outlined in this article.
Collapse
Affiliation(s)
- Lucas Kambanis
- School of Chemistry, The University of Sydney, Sydney, NSW, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, Australia
| | - Sameer S Kulkarni
- School of Chemistry, The University of Sydney, Sydney, NSW, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, Australia
| | - Richard J Payne
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
10
|
Robinson SD, Kambanis L, Clayton D, Hinneburg H, Corcilius L, Mueller A, Walker AA, Keramidas A, Kulkarni SS, Jones A, Vetter I, Thaysen-Andersen M, Payne RJ, King GF, Undheim EAB. A pain-causing and paralytic ant venom glycopeptide. iScience 2021; 24:103175. [PMID: 34693225 PMCID: PMC8517206 DOI: 10.1016/j.isci.2021.103175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/07/2021] [Accepted: 09/22/2021] [Indexed: 11/26/2022] Open
Abstract
Ants (Hymenoptera: Formicidae) are familiar inhabitants of most terrestrial environments. Although we are aware of the ability of many species to sting, knowledge of ant venom chemistry remains limited. Herein, we describe the discovery and characterization of an O-linked glycopeptide (Mg7a) as a major component of the venom of the ant Myrmecia gulosa. Electron transfer dissociation and higher-energy collisional dissociation tandem mass spectrometry were used to localize three α-N-acetylgalactosaminyl residues (α-GalNAc) present on the 63-residue peptide. To allow for functional studies, we synthesized the full-length glycosylated peptide via solid-phase peptide synthesis, combined with diselenide-selenoester ligation-deselenization chemistry. We show that Mg7a is paralytic and lethal to insects, and triggers pain behavior and inflammation in mammals, which it achieves through a membrane-targeting mode of action. Deglycosylation of Mg7a renders it insoluble in aqueous solution, suggesting a key solubilizing role of the O-glycans.
Collapse
Affiliation(s)
- Samuel D Robinson
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia.,Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Lucas Kambanis
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Daniel Clayton
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Hannes Hinneburg
- Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Leo Corcilius
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Alexander Mueller
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Andrew A Walker
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Angelo Keramidas
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Sameer S Kulkarni
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Alun Jones
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | - Richard J Payne
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia.,ARC Centre of Excellence for Innovations in Peptide and Protein Science, St Lucia, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia.,ARC Centre of Excellence for Innovations in Peptide and Protein Science, St Lucia, Australia
| | - Eivind A B Undheim
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia.,Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia.,Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway.,Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, The University of Oslo, 0316 Oslo, Norway
| |
Collapse
|