1
|
Qiao L, Li M, Cui Y, Xu S, Reimers JR, Ren W. Giant Carrier Mobility in a Room-Temperature Ferromagnetic VSi 2N 4 Monolayer. NANO LETTERS 2024; 24:6403-6409. [PMID: 38767304 DOI: 10.1021/acs.nanolett.4c01416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Using density functional theory (DFT), we investigate that two possible phases of VSi2N4 (VSN) may be realized, one called the "H phase" corresponding to what is known from calculation and herein the other new "T phase" being stabilized by a biaxial tensile strain of 3%. Significantly, the H phase is predicted to display a giant carrier mobility of 1 × 106 cm2 V-1 s-1, which exceeds that for most 2D magnetic materials, with a Curie temperature (TC) exceeding room temperature and a band gap of 2.01 eV at the K point. Following the H-T phase transition, the direct band gap shifts to the Γ point and increases to 2.59 eV. The Monte Carlo (MC) simulations also indicate that TC of the T phase VSN can be effectively modulated by strain, reaching room temperature under a biaxial strain of -4%. These results show that VSN should be a promising functional material for future nanoelectronics.
Collapse
Affiliation(s)
- Lei Qiao
- Institute for Quantum Science and Technology, International Center of Quantum and Molecular Structures, Materials Genome Institute, Physics Department, Shanghai University, Shanghai 200444, People's Republic of China
| | - Musen Li
- Institute for Quantum Science and Technology, International Center of Quantum and Molecular Structures, Materials Genome Institute, Physics Department, Shanghai University, Shanghai 200444, People's Republic of China
- Department of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Yaning Cui
- Institute for Quantum Science and Technology, International Center of Quantum and Molecular Structures, Materials Genome Institute, Physics Department, Shanghai University, Shanghai 200444, People's Republic of China
| | - Shaowen Xu
- Institute for Quantum Science and Technology, International Center of Quantum and Molecular Structures, Materials Genome Institute, Physics Department, Shanghai University, Shanghai 200444, People's Republic of China
| | - Jeffrey R Reimers
- Institute for Quantum Science and Technology, International Center of Quantum and Molecular Structures, Materials Genome Institute, Physics Department, Shanghai University, Shanghai 200444, People's Republic of China
- Department of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Wei Ren
- Institute for Quantum Science and Technology, International Center of Quantum and Molecular Structures, Materials Genome Institute, Physics Department, Shanghai University, Shanghai 200444, People's Republic of China
- Zhejiang Laboratory, Hangzhou 311100, People's Republic of China
| |
Collapse
|
2
|
Ramos P, Friedman H, Li BY, Garcia C, Sletten E, Caram JR, Jang SJ. Nonadiabatic Derivative Couplings through Multiple Franck-Condon Modes Dictate the Energy Gap Law for Near and Short-Wave Infrared Dye Molecules. J Phys Chem Lett 2024; 15:1802-1810. [PMID: 38329913 DOI: 10.1021/acs.jpclett.3c02629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Near infrared (NIR, 700-1000 nm) and short-wave infrared (SWIR, 1000-2000 nm) dye molecules exhibit significant nonradiative decay rates from the first singlet excited state to the ground state. While these trends can be empirically explained by a simple energy gap law, detailed mechanisms of nearly universal behavior have remained unsettled for many cases. Theoretical and experimental results for two representative NIR/SWIR dye molecules reported here clarify the key mechanism for the observed energy gap law behavior. It is shown that the first derivative nonadiabatic coupling terms serve as major coupling pathways for nonadiabatic decay processes from the first excited singlet state to the ground state for these NIR and SWIR dye molecules and that vibrational modes other than the highest frequency modes also make significant contributions to the rate. This assessment is corroborated by further theoretical comparison with possible alternative mechanisms of intersystem crossing to triplet states and also by comparison with experimental data for deuterated molecules.
Collapse
Affiliation(s)
- Pablo Ramos
- Department of Chemistry and Biochemistry, Queens College, City University of New York, 65-30 Kissena Boulevard, New York, New York 11367, United States
| | - Hannah Friedman
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Barry Y Li
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Cesar Garcia
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ellen Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Justin R Caram
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, 65-30 Kissena Boulevard, New York, New York 11367, United States
- Chemistry and Physics PhD programs, Graduate Center, City University of New York, New York, New York 10016, United States
| |
Collapse
|
3
|
Korona T, Jankowska J, Masoumifeshani E. Dicarbon defect in hexagonal boron nitride monolayer—a theoretical study. CAN J CHEM 2023. [DOI: 10.1139/cjc-2022-0291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A comprehensive theoretical study of the lowest electronic vertical excitations of the CBCN defect in the monolayer of hexagonal boron nitride has been performed. Both the periodic boundary conditions approach and the finite-cluster simulation of the defect have been utilized at the density-functional theory (DFT) level. Clusters of increasing sizes have been used in order to estimate artefacts resulting from edge effects. The stability of the results with respect to several density functionals and various basis sets has been also examined. High-level ab initio calculations with methods like equation-of-motion coupled cluster method with single and double excitations (EOM-CCSD), algebraic-diagrammatic construction to the second order (ADC(2)), and time-dependent approximate coupled cluster theory to the second order (TD-CC2) were performed for the smallest clusters. It turns out that TD-DFT with the CAM-B3LYP functional gives similar lowest excitation energies as EOM-CCSD, ADC(2), and TD-CC2. The lowest excitation energies resulting from the periodic-boundary calculation utilizing the Bethe–Salpeter equation are in agreement with the results for finite clusters. The analysis of important configurations and transition densities shows that for all studied methods, the lowest excited state is localized on two carbon atoms and their closest neighbours and has a large dipole transition moment. The optimized geometries for the lowest two excited states indicate that in both cases, the carbon–carbon bond becomes a single bond, while for the second excited state, additionally one from boron–nitrogen bonds loses its partially double character. The calculation of the excitation energies at the respective optimal geometry reveals that these two energies become about 0.5 eV lower than vertical excitations from the ground-state geometry.
Collapse
Affiliation(s)
- Tatiana Korona
- Faculty of Chemistry, University of Warsaw, Warsaw 02-093, Poland
| | - Joanna Jankowska
- Faculty of Chemistry, University of Warsaw, Warsaw 02-093, Poland
| | | |
Collapse
|
4
|
Zhang L, Shu Y, Xing C, Chen X, Sun S, Huang Y, Truhlar DG. Recommendation of Orbitals for G0W0 Calculations on Molecules and Crystals. J Chem Theory Comput 2022; 18:3523-3537. [PMID: 35580263 DOI: 10.1021/acs.jctc.2c00242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The many-body GW approximation, especially the G0W0 method, has been widely used for condensed matter and molecules to calculate quasiparticle energies for ionization, electron attachment, and band gaps. Because G0W0 calculations are well-known to have a strong dependence on the orbitals, the goal of the present work is to provide guidance on the choice of density functional used to generate orbitals and to recommend a choice that gives the most broadly accurate results. We have systematically investigated the dependence of G0W0 calculations on the orbitals for 100 molecules and 8 crystals by considering orbitals obtained with a diverse set of Kohn-Sham (KS) and generalized KS (GKS) functionals (63 functionals plus Hartree-Fock). The percentage of Hartree-Fock exchange employed in density functionals has been found to have strong influence on the predicted molecular ionization energy and crystal fundamental band gaps (with optimum values between 40 and 56%), but to have less effect on predicting molecular electron affinities. The low cost of the Gaussian implementation, even with hybrid functionals in periodic calculations, the better performance of global hybrids as compared to range-separated hybrids of either than screened exchange or long-range-corrected type, and the relatively low cost of global-hybrid-functional periodic calculations using Gaussians means that one can employ global-hybrid functionals at a very reasonable cost and obtain more accurate band gaps of semiconductors than are obtained by the methods currently widely employed, namely local gradient approximations. We single out three global-hybrid functionals that give especially good results for both molecules (100 in the test set) and crystals (8 in the test set, for all of which our benchmark data are the proper band gap rather than an optical band gap uncorrected for exciton effects).
Collapse
Affiliation(s)
- Linyao Zhang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China.,School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Yinan Shu
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Chang Xing
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China.,School of Astronautics, Harbin Institute of Technology, Harbin 150001, PR China
| | - Xiye Chen
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China.,School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Shaozeng Sun
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Yudong Huang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Donald G Truhlar
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|