1
|
Wei J, Shao Y, Xu J, Yin F, Li Z, Qian H, Wei Y, Chang L, Han Y, Li J, Gan L. Sequential oxygen evolution and decoupled water splitting via electrochemical redox reaction of nickel hydroxides. Nat Commun 2024; 15:9012. [PMID: 39424812 PMCID: PMC11489567 DOI: 10.1038/s41467-024-53310-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
Alkaline water electrolysis is a promising low-cost strategy for clean and sustainable hydrogen production but is largely limited by the sluggish anodic oxygen evolution reaction and the challenges in maintaining adequate separation between H2 and O2. Here, we reveal an anodic-cathodic sequential oxygen evolution process via electrochemical oxidation and subsequent reduction of Ni hydroxides, enabling much lower overpotentials than conventional anodic oxygen evolution. By using (isotope-labeled) differential electrochemical mass spectrometry and in situ Raman spectroscopy combined with density functional theory calculations, we evidence that the sequential oxygen evolution originates from the electrochemical oxidation of Ni hydroxides to NiOO- active species while undergoing a different, reductive step of NiOO- for the final release of O2 due to weakened Ni-O covalency. Based on this sequential process, we propose and demonstrate a hybrid water electrolysis and energy storage device, which enables time-decoupled hydrogen and oxygen evolution and electrochemical energy storage in the Ni hydroxides.
Collapse
Affiliation(s)
- Jie Wei
- Institute of Materials Research and Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Yangfan Shao
- Institute of Materials Research and Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Jingbo Xu
- Institute of Materials Research and Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Fang Yin
- Institute of Materials Research and Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Zejian Li
- Institute of Materials Research and Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Haitao Qian
- Institute of Materials Research and Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Yinping Wei
- Institute of Materials Research and Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Liang Chang
- Institute of Materials Research and Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Yu Han
- Institute of Materials Research and Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Jia Li
- Institute of Materials Research and Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.
| | - Lin Gan
- Institute of Materials Research and Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.
| |
Collapse
|
2
|
Hu C, Xing G, Han W, Hao Y, Zhang C, Zhang Y, Kuo CH, Chen HY, Hu F, Li L, Peng S. Inhibiting Demetalation of Fe─N─C via Mn Sites for Efficient Oxygen Reduction Reaction in Zinc-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405763. [PMID: 38809945 DOI: 10.1002/adma.202405763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Demetalation caused by the electrochemical dissolution of metallic Fe atoms is a major challenge for the practical application of Fe─N─C catalysts. Herein, an efficient single metallic Mn active site is constructed to improve the strength of the Fe─N bond, inhibiting the demetalation effect of Fe─N─C. Mn acts as an electron donor inducing more delocalized electrons to reduce the oxidation state of Fe by increasing the electron density, thereby enhancing the Fe─N bond and inhibiting the electrochemical dissolution of Fe. The oxygen reduction reaction pathway for the dissociation of Fe─Mn dual sites can overcome the high energy barriers to direct O─O bond dissociation and modulate the electronic states of Fe─N4 sites. The resulting FeMn─N─C exhibits excellent ORR activity with a high half-wave potential of 0.92 V in alkaline electrolytes. FeMn─N─C as a cathode catalyst for Zn-air batteries has a cycle stability of 700 h at 25 °C and a long cycle stability of more than 210 h under extremely cold conditions at -40 °C. These findings contribute to the development of efficient and stable metal-nitrogen-carbon catalysts for various energy devices.
Collapse
Affiliation(s)
- Chuan Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Gengyu Xing
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Wentao Han
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Yixin Hao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Chenchen Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Ying Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chun-Han Kuo
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Han-Yi Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Feng Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Linlin Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| |
Collapse
|
3
|
Putnam ST, Rodríguez-López J. Real-time investigation of reactive oxygen species and radicals evolved from operating Fe-N-C electrocatalysts during the ORR: potential dependence, impact on degradation, and structural comparisons. Chem Sci 2024; 15:10036-10045. [PMID: 38966386 PMCID: PMC11220586 DOI: 10.1039/d4sc01553c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/28/2024] [Indexed: 07/06/2024] Open
Abstract
Improving the stability of platinum-group-metal-free (PGM-free) catalysts is a critical roadblock to the development of economically feasible energy storage and conversion technologies. Fe-N-C catalysts, the most promising class of PGM-free catalysts, suffer from rapid degradation. The generation of reactive oxygen species (ROS) during the oxygen reduction reaction (ORR) has been proposed as a central cause of this loss of activity. However, there is insufficient understanding of the generation and dynamics of ROS under catalytic conditions due to the difficulty of detecting and quantifying short-lived ROS such as the hydroxyl radical, OH˙. To accomplish this, we use operando scanning electrochemical microscopy (SECM) to probe the production of radicals by a commercial pyrolyzed Fe-N-C catalyst in real-time using a redox-active spin trap methodology. SECM showed the monotonic production of OH˙ which followed the ORR activity. Our results were thoroughly backed using electron spin resonance confirmation to show that the hydroxyl radical is the dominant radical species produced. Furthermore, OH˙ and H2O2 production followed distinct trends. ROS studied as a function of catalyst degradation also showed a decreased production, suggesting its relation to the catalytic activity of the sample. The structural origins of ROS production were also probed using model systems such as iron phthalocyanine (FePc) and Fe3O4 nanoparticles, both of which showed significant generation of OH˙ during the ORR. These results provide a comprehensive insight into the critical, yet under-studied, aspects of the production and effects of ROS on electrocatalytic systems and open the door for further mechanistic and kinetic investigation using SECM.
Collapse
Affiliation(s)
- Seth T Putnam
- Department of Chemistry, University of Illinois Urbana-Champaign 600 S. Matthews Ave. Urbana IL 61801 USA
| | - Joaquín Rodríguez-López
- Department of Chemistry, University of Illinois Urbana-Champaign 600 S. Matthews Ave. Urbana IL 61801 USA
| |
Collapse
|
4
|
Luo Y, Li K, Hu Y, Chen T, Wang Q, Hu J, Feng J, Feng J. TiN as Radical Scavenger in Fe─N─C Aerogel Oxygen Reduction Catalyst for Durable Fuel Cell. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309822. [PMID: 38396268 DOI: 10.1002/smll.202309822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Fe─N─C is the most promising alternative to platinum-based catalysts to lower the cost of proton-exchange-membrane fuel cell (PEMFC). However, the deficient durability of Fe─N─C has hindered their application. Herein, a TiN-doped Fe─N─C (Fe─N─C/TiN) is elaborately synthesized via the sol-gel method for the oxygen-reduction reaction (ORR) in PEMFC. The interpenetrating network composed by Fe─N─C and TiN can simultaneously eliminate the free radical intermediates while maintaining the high ORR activity. As a result, the H2O2 yields of Fe─N─C/TiN are suppressed below 4%, ≈4 times lower than the Fe─N─C, and the half-wave potential only lost 15 mV after 30 kilo-cycle accelerated durability test (ADT). In a H2─O2 fuel cell assembled with Fe─N─C/TiN, it presents 980 mA cm-2 current density at 0.6 V, 880 mW cm-2 peak power density, and only 17 mV voltage loss at 0.80 A cm-2 after 10 kilo-cycle ADT. The experiment and calculation results prove that the TiN has a strong adsorption interaction for the free radical intermediates (such as *OH, *OOH, etc.), and the radicals are scavenged subsequently. The rational integration of Fe single-atom, TiN radical scavenger, and highly porous network adequately utilize the intrinsic advantages of composite structure, enabling a durable and active Pt-metal-free catalyst for PEMFC.
Collapse
Affiliation(s)
- Yi Luo
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, 109 De Ya Road, Changsha, Hunan, 410073, China
- Department of Aviation Oil and Material, Air Force Logistics Academy, 72 Xi Ge Road, Xuzhou, Jiangsu, 221000, China
| | - Ke Li
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Ba Yi Road, Wuhan, Hubei, 300720, China
| | - Yijie Hu
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, 109 De Ya Road, Changsha, Hunan, 410073, China
| | - Teng Chen
- Department of Aviation Oil and Material, Air Force Logistics Academy, 72 Xi Ge Road, Xuzhou, Jiangsu, 221000, China
| | - Qichen Wang
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Jianqiang Hu
- Department of Aviation Oil and Material, Air Force Logistics Academy, 72 Xi Ge Road, Xuzhou, Jiangsu, 221000, China
| | - Jian Feng
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, 109 De Ya Road, Changsha, Hunan, 410073, China
| | - Junzong Feng
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, 109 De Ya Road, Changsha, Hunan, 410073, China
| |
Collapse
|
5
|
Zheng H, Deng D, Zheng X, Chen Y, Bai Y, Liu M, Jiang J, Zheng H, Wang Y, Wang J, Yang P, Xiong Y, Xiong X, Lei Y. Highly Reversible Zn-Air Batteries Enabled by Tuned Valence Electron and Steric Hindrance on Atomic Fe-N 4-C Sites. NANO LETTERS 2024; 24:4672-4681. [PMID: 38587873 DOI: 10.1021/acs.nanolett.4c01078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The bifunctional oxygen electrocatalyst is the Achilles' heel of achieving robust reversible Zn-air batteries (ZABs). Herein, durable bifunctional oxygen electrocatalysis in alkaline media is realized on atomic Fe-N4-C sites reinforced by NixCo3-xO4 (NixCo3-xO4@Fe1/NC). Compared with that of pristine Fe1/NC, the stability of the oxygen evolution reaction (OER) is increased 10 times and the oxygen reduction reaction (ORR) performance is also improved. The steric hindrance alters the valence electron at the Fe-N4-C sites, resulting in a shorter Fe-N bond and enhanced stability of the Fe-N4-C sites. The corresponding solid-state ZABs exhibit an ultralong lifespan (>460 h at 5 mA cm-2) and high rate performance (from 2 to 50 mA cm-2). Furthermore, the structural evolution of NixCo3-xO4@Fe1/NC before and after the OER and ORR as well as charge-discharge cycling is explored. This work develops an efficient strategy for improving bifunctional oxygen electrocatalysis and possibly other processes.
Collapse
Affiliation(s)
- Huanran Zheng
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Danni Deng
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Xinran Zheng
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Yingbi Chen
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Yu Bai
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Mengjie Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Jiabi Jiang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Haitao Zheng
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Yuchao Wang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Jinxian Wang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Peiyao Yang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Yu Xiong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xiang Xiong
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Yongpeng Lei
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
6
|
Zheng Y, Zhang L, Wang X, Guo F, Xing Y, Li G, Yue T. Selenium-modified activated coke: a high-capacity and facile designed Hg 0 adsorbent for coal-fired flue gas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29656-29668. [PMID: 38587778 DOI: 10.1007/s11356-024-32995-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/15/2024] [Indexed: 04/09/2024]
Abstract
The substantial amount of mercury emissions from coal-fired flue gas causes severe environmental contamination. With the Minamata Convention now officially in force, it is critical to strengthen mercury pollution control. Existing activated carbon injection technologies suffer from poor desulfurization performance and risk secondary-release risks. Therefore, considering the potential industrial application of adsorbents, we selected cost-effective and readily available activated coke (AC) as the carrier in this study. Four metal selenides-copper, iron, manganese, and tin-were loaded onto the AC to overcome the application problems of existing technologies. After 120 min of adsorption, the CuSe/AC exhibited the highest efficiency in removing Hg0, surpassing 80% according to the experimental findings. In addition, the optimal adsorption temperature window was 30-120 °C, the maximum adsorption rate was 2.9 × 10-2 mg·g-1·h-1, and the effectiveness of CuSe/AC in capturing Hg0 only dropped by 5.2% in the sulfur-containing atmosphere. The physicochemical characterization results indicated that the AC surface had a uniform loading of CuSe with a nanosheet structure resembling polygon and that the Cu-to-Se atomic ratio was close to 1:1. Finally, two possible Hg0 reaction pathways on CuSe/AC were proposed. Moreover, it was elucidated that the highly selective binding of Hg0 with ligand-unsaturated Se- was the key factor in achieving high adsorption efficiency and sulfur resistance in the selenium-functionalized AC adsorbent. This finding offers substantial theoretical support for the industrial application of this adsorbent.
Collapse
Affiliation(s)
- Yang Zheng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, , Beijing, 100083, China
| | - Lin Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, , Beijing, 100083, China
| | - Xiaocong Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, , Beijing, 100083, China
| | - Fenghui Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, , Beijing, 100083, China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, , Beijing, 100083, China
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, China
| | - Guoliang Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, , Beijing, 100083, China
| | - Tao Yue
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, , Beijing, 100083, China.
| |
Collapse
|
7
|
Lyu L, Hu X, Lee S, Fan W, Kim G, Zhang J, Zhou Z, Kang YM. Oxygen Reduction Kinetics of Fe-N-C Single Atom Catalysts Boosted by Pyridinic N Vacancy for Temperature-Adaptive Zn-Air Batteries. J Am Chem Soc 2024; 146:4803-4813. [PMID: 38335455 DOI: 10.1021/jacs.3c13111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The design of temperature-adaptive Zn-air batteries (ZABs) with long life spans and high energy efficiencies is challenging owing to sluggish oxygen reduction reaction (ORR) kinetics and an unstable Zn/electrolyte interface. Herein, a quasi-solid-state ZAB is designed by combining atomically dispersed Fe-N-C catalysts containing pyridinic N vacancies (FeNC-VN) with a polarized organo-hydrogel electrolyte. First-principles calculation predicts that adjacent VN sites effectively enhance the covalency of Fe-Nx moieties and moderately weaken *OH binding energies, significantly boosting the ORR kinetics and stability. In situ Raman spectra reveal the dynamic evolution of *O2- and *OOH on the FeNC-VN cathode in the aqueous ZAB, proving that the 4e- associative mechanism is dominant. Moreover, the ethylene glycol-modulated organo-hydrogel electrolyte forms a zincophilic protective layer on the Zn anode surface and tailors the [Zn(H2O)6]2+ solvation sheath, effectively guiding epitaxial deposition of Zn2+ on the Zn (002) plane and suppressing side reactions. The assembled quasi-solid-state ZAB demonstrates a long life span of over 1076 h at 2 mA cm-2 at -20 °C, outperforming most reported ZABs.
Collapse
Affiliation(s)
- Lulu Lyu
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Xu Hu
- School of Materials Science and Engineering, Institute of New Energy Material Chemistry, Renewable Energy Conversion and Storage Center (ReCast), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, China
| | - Suwon Lee
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Wenqi Fan
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Gilseob Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jiliang Zhang
- School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, P. R. China
| | - Zhen Zhou
- School of Materials Science and Engineering, Institute of New Energy Material Chemistry, Renewable Energy Conversion and Storage Center (ReCast), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, China
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yong-Mook Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Department of Battery-Smart Factory, Korea University, Seoul 02841, Republic of Korea
- Energy Storage Research Center, Clean Energy Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| |
Collapse
|
8
|
Yu J, Su C, Shang L, Zhang T. Single-Atom-Based Oxygen Reduction Reaction Catalysts for Proton Exchange Membrane Fuel Cells: Progress and Perspective. ACS NANO 2023; 17:19514-19525. [PMID: 37812403 DOI: 10.1021/acsnano.3c06522] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Single-atom catalysts (SACs) are regarded as promising non-noble-metal alternatives for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells due to their high atom utilization efficiency and excellent catalytic properties. However, the insufficient long-term stability issues of SACs under the working conditions seriously hinder their practical application. In this perspective, the recent progress of SACs with optimized ORR catalytic activity is first reviewed. Then, the possible degradation mechanisms of SACs in the ORR process and effective strategies for improving their ORR durability are summarized. Finally, some challenges and opportunities are proposed to develop stable single-atom-based ORR electrocatalysts in the future.
Collapse
Affiliation(s)
- Jianmin Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shen Zhen 518060, People's Republic of China
| | - Chenliang Su
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shen Zhen 518060, People's Republic of China
| | - Lu Shang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
9
|
Li L, Wen Y, Han G, Kong F, Du L, Ma Y, Zuo P, Du C, Yin G. Architecting FeN x on High Graphitization Carbon for High-Performance Oxygen Reduction by Regulating d-Band Center. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300758. [PMID: 36866497 DOI: 10.1002/smll.202300758] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/14/2023] [Indexed: 06/02/2023]
Abstract
Fe single atoms and N co-doped carbon nanomaterials (Fe-N-C) are the most promising oxygen reduction reaction (ORR) catalysts to replace platinum group metals. However, high-activity Fe single-atom catalysts suffer from poor stability owing to the low graphitization degree. Here, an effective phase-transition strategy is reported to enhance the stability of Fe-N-C catalysts by inducing increased degree of graphitization and incorporation of Fe nanoparticles encapsulated by graphitic carbon layer without sacrificing activity. Remarkably, the resulted Fe@Fe-N-C catalysts achieved excellent ORR activity (E1/2 = 0.829 V) and stability (19 mV loss after 30K cycles) in acid media. Density functional theory (DFT) calculations agree with experimental phenomena that additional Fe nanoparticles not only favor to the activation of O2 by tailoring d-band center position but also inhibit the demetallization of Fe active center from FeN4 sites. This work provides a new insight into the rational design of highly efficient and durable Fe-N-C catalysts for ORR.
Collapse
Affiliation(s)
- Lingfeng Li
- MIIT Key Laboratory of Critical Materials, Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yandi Wen
- MIIT Key Laboratory of Critical Materials, Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Guokang Han
- MIIT Key Laboratory of Critical Materials, Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Fanpeng Kong
- MIIT Key Laboratory of Critical Materials, Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Lei Du
- MIIT Key Laboratory of Critical Materials, Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yulin Ma
- MIIT Key Laboratory of Critical Materials, Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Pengjian Zuo
- MIIT Key Laboratory of Critical Materials, Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Chunyu Du
- MIIT Key Laboratory of Critical Materials, Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Geping Yin
- MIIT Key Laboratory of Critical Materials, Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| |
Collapse
|
10
|
Wan K, Chu T, Li B, Ming P, Zhang C. Rational Design of Atomically Dispersed Metal Site Electrocatalysts for Oxygen Reduction Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203391. [PMID: 36717282 PMCID: PMC10104677 DOI: 10.1002/advs.202203391] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/29/2022] [Indexed: 06/18/2023]
Abstract
Future renewable energy supply and a cleaner Earth greatly depend on various crucial catalytic reactions for the society. Atomically dispersed metal site electrocatalysts (ADMSEs) have attracted tremendous research interest and are considered as the next-generation promising oxygen reduction reaction (ORR) electrocatalysts due to the maximum atom utilization efficiency, tailorable catalytic sites, and tunable electronic structures. Despite great efforts have been devoted to the development of ADMSEs, the systematic summary for design principles of high-efficiency ADMSEs is not sufficiently highlighted for ORR. In this review, the authors first summarize the fundamental ORR mechanisms for ADMSEs, and further discuss the intrinsic catalytic mechanism from the perspective of theoretical calculation. Then, the advanced characterization techniques to identify the active sites and effective synthesis methods to prepare catalysts for ADMSEs are also showcased. Subsequently, a special emphasis is placed on effective strategies for the rational design of the advanced ADMSEs. Finally, the present challenges to be addressed in practical application and future research directions are also proposed to overcome the relevant obstacles for developing high-efficiency ORR electrocatalysts. This review aims to provide a deeper understanding for catalytic mechanisms and valuable design principles to obtain the advanced ADMSEs for sustainable energy conversion and storage techniques.
Collapse
Affiliation(s)
- Kechuang Wan
- Clean Energy Automotive Engineering Center and School of Automotive StudiesTongji University4800 Cao'an RoadShanghai201804China
| | - Tiankuo Chu
- Clean Energy Automotive Engineering Center and School of Automotive StudiesTongji University4800 Cao'an RoadShanghai201804China
| | - Bing Li
- Clean Energy Automotive Engineering Center and School of Automotive StudiesTongji University4800 Cao'an RoadShanghai201804China
| | - Pingwen Ming
- Clean Energy Automotive Engineering Center and School of Automotive StudiesTongji University4800 Cao'an RoadShanghai201804China
| | - Cunman Zhang
- Clean Energy Automotive Engineering Center and School of Automotive StudiesTongji University4800 Cao'an RoadShanghai201804China
| |
Collapse
|
11
|
Barrio J, Pedersen A, Favero S, Luo H, Wang M, Sarma SC, Feng J, Ngoc LTT, Kellner S, Li AY, Jorge Sobrido AB, Titirici MM. Bioinspired and Bioderived Aqueous Electrocatalysis. Chem Rev 2023; 123:2311-2348. [PMID: 36354420 PMCID: PMC9999430 DOI: 10.1021/acs.chemrev.2c00429] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 11/12/2022]
Abstract
The development of efficient and sustainable electrochemical systems able to provide clean-energy fuels and chemicals is one of the main current challenges of materials science and engineering. Over the last decades, significant advances have been made in the development of robust electrocatalysts for different reactions, with fundamental insights from both computational and experimental work. Some of the most promising systems in the literature are based on expensive and scarce platinum-group metals; however, natural enzymes show the highest per-site catalytic activities, while their active sites are based exclusively on earth-abundant metals. Additionally, natural biomass provides a valuable feedstock for producing advanced carbonaceous materials with porous hierarchical structures. Utilizing resources and design inspiration from nature can help create more sustainable and cost-effective strategies for manufacturing cost-effective, sustainable, and robust electrochemical materials and devices. This review spans from materials to device engineering; we initially discuss the design of carbon-based materials with bioinspired features (such as enzyme active sites), the utilization of biomass resources to construct tailored carbon materials, and their activity in aqueous electrocatalysis for water splitting, oxygen reduction, and CO2 reduction. We then delve in the applicability of bioinspired features in electrochemical devices, such as the engineering of bioinspired mass transport and electrode interfaces. Finally, we address remaining challenges, such as the stability of bioinspired active sites or the activity of metal-free carbon materials, and discuss new potential research directions that can open the gates to the implementation of bioinspired sustainable materials in electrochemical devices.
Collapse
Affiliation(s)
- Jesús Barrio
- Department
of Materials, Royal School of Mines, Imperial
College London, LondonSW7 2AZ, England, U.K.
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Angus Pedersen
- Department
of Materials, Royal School of Mines, Imperial
College London, LondonSW7 2AZ, England, U.K.
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Silvia Favero
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Hui Luo
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Mengnan Wang
- Department
of Materials, Royal School of Mines, Imperial
College London, LondonSW7 2AZ, England, U.K.
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Saurav Ch. Sarma
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Jingyu Feng
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, England, U.K.
| | - Linh Tran Thi Ngoc
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, England, U.K.
| | - Simon Kellner
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Alain You Li
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Ana Belén Jorge Sobrido
- School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, England, U.K.
| | - Maria-Magdalena Titirici
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
- Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1
Katahira, Aobaku, Sendai, Miyagi980-8577, Japan
| |
Collapse
|
12
|
Xia D, Tang X, Dai S, Ge R, Rykov A, Wang J, Huang TH, Wang KW, Wei Y, Zhang K, Li J, Gan L, Kang F. Ultrastable Fe-N-C Fuel Cell Electrocatalysts by Eliminating Non-Coordinating Nitrogen and Regulating Coordination Structures at High Temperatures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204474. [PMID: 36398715 DOI: 10.1002/adma.202204474] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Pyrolyzed Fe-N-C materials have attracted considerable interest as one of the most active noble-metal-free electrocatalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). Despite significant progress is made in improving their catalytic activity during past decades, the Fe-N-C catalysts still suffer from fairly poor electrochemical and storage stability, which greatly hurdles their practical application. Here, an effective strategy is developed to greatly improve their catalytic stability in PEMFCs and storage stability by virtue of previously unexplored high-temperature synthetic chemistry between 1100 and 1200 °C. Pyrolysis at this rarely adopted temperature range not only enables the elimination of less active nitrogen-doped carbon sites that generate detrimental peroxide byproduct but also regulates the coordination structure of Fe-N-C from less stable D1 (O-FeN4 C12 ) to a more stable D2 structure (FeN4 C10 ). The optimized Fe-N-C catalyst exhibits excellent stability in PEMFCs (>80% performance retention after 30 h under H2 /O2 condition) and no activity loss after 35 day storage while maintaining a competitive ORR activity and PEMFC performance.
Collapse
Affiliation(s)
- Dongsheng Xia
- Shenzhen Geim Graphene Research Center, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Xuan Tang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China
| | - Rile Ge
- Center for Advanced Mössbauer Spectroscopy, Mössbauer Effect Data Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Alexander Rykov
- Center for Advanced Mössbauer Spectroscopy, Mössbauer Effect Data Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Junhu Wang
- Center for Advanced Mössbauer Spectroscopy, Mössbauer Effect Data Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Tzu-Hsi Huang
- Institute of Materials Science and Engineering, National Central University, Taoyuan, 320, Taiwan
| | - Kuan-Wen Wang
- Institute of Materials Science and Engineering, National Central University, Taoyuan, 320, Taiwan
| | - Yinping Wei
- Shenzhen Geim Graphene Research Center, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Kai Zhang
- Shenzhen Geim Graphene Research Center, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Jia Li
- Shenzhen Geim Graphene Research Center, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Lin Gan
- Shenzhen Geim Graphene Research Center, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Feiyu Kang
- Shenzhen Geim Graphene Research Center, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| |
Collapse
|
13
|
Wang B, Lan J, Bo C, Gong B, Ou J. Adsorption of heavy metal onto biomass-derived activated carbon: review. RSC Adv 2023; 13:4275-4302. [PMID: 36760304 PMCID: PMC9891085 DOI: 10.1039/d2ra07911a] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Due to the rapid development of the social economy and the massive increase in population, human beings continue to undertake processing, and commercial manufacturing activities of heavy metals, which has caused serious damage to the environment and human health. Heavy metals lead to serious environmental problems such as soil contamination and water pollution. Human health and the living environment are closely affected by the handling of heavy metals. Researchers must find several simple, economical and practical methods to adsorb heavy metals. Adsorption technology has been recognized as an efficient and economic strategy, exhibiting the advantages of recovering and reusing adsorbents. Biomass-derived activated carbon adsorbents offer large adjustable specific surface area, hierarchically porous structure, strong adsorption capacity, and excellent high economic applicability. This paper focuses on reviewing the preparation methods of biomass-derived activated carbon in the past five years. The application of representative biomass-derived activated carbon in the adsorption of heavy metals preferentially was described to optimize the critical parameters of the activation type of samples and process conditions. The key factors of the adsorbent, the physicochemical properties of the heavy metals, and the adsorption conditions affecting the adsorption of heavy metals are highlighted. In addition, the challenges faced by biomass-derived activated carbon are also discussed.
Collapse
Affiliation(s)
- Baoying Wang
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University Yinchuan 750021 PR China
| | - Jingming Lan
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University Yinchuan 750021 PR China
| | - Chunmiao Bo
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University Yinchuan 750021 PR China
| | - Bolin Gong
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University Yinchuan 750021 PR China
| | - Junjie Ou
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University Yinchuan 750021 PR China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
14
|
The generation of carbon/oxygen double defects in FeP/CoP-N-C enhanced by β particles for photic driving degradation of levofloxacin. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Revealing the concentration of hydrogen peroxide in fuel cell catalyst layers by an in-operando approach. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63993-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Wei J, Xia D, Wei Y, Zhu X, Li J, Gan L. Probing the Oxygen Reduction Reaction Intermediates and Dynamic Active Site Structures of Molecular and Pyrolyzed Fe–N–C Electrocatalysts by In Situ Raman Spectroscopy. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00771] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jie Wei
- Shenzhen Geim Graphene Research Centre, Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Dongsheng Xia
- Shenzhen Geim Graphene Research Centre, Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Yinping Wei
- Shenzhen Geim Graphene Research Centre, Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Xuya Zhu
- Shenzhen Geim Graphene Research Centre, Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Jia Li
- Shenzhen Geim Graphene Research Centre, Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Lin Gan
- Shenzhen Geim Graphene Research Centre, Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| |
Collapse
|
17
|
Iron atom-cluster interactions increase activity and improve durability in Fe-N-C fuel cells. Nat Commun 2022; 13:2963. [PMID: 35618792 PMCID: PMC9135695 DOI: 10.1038/s41467-022-30702-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/13/2022] [Indexed: 11/09/2022] Open
Abstract
Simultaneously increasing the activity and stability of the single-atom active sites of M–N–C catalysts is critical but remains a great challenge. Here, we report an Fe–N–C catalyst with nitrogen-coordinated iron clusters and closely surrounding Fe–N4 active sites for oxygen reduction reaction in acidic fuel cells. A strong electronic interaction is built between iron clusters and satellite Fe–N4 due to unblocked electron transfer pathways and very short interacting distances. The iron clusters optimize the adsorption strength of oxygen reduction intermediates on Fe–N4 and also shorten the bond amplitude of Fe–N4 with incoherent vibrations. As a result, both the activity and stability of Fe–N4 sites are increased by about 60% in terms of turnover frequency and demetalation resistance. This work shows the great potential of strong electronic interactions between multiphase metal species for improvements of single-atom catalysts. It is challenging to break the activity–stability trade-off in Fe–N–C fuel cell catalysts. Here, the authors show that interactions between iron atoms and clusters accelerate reaction kinetics and suppress demetalation to improve fuel cell stability.
Collapse
|
18
|
Tang W, Ma N, Fei C, Wang Y. Regulation of Hydroxyl Radicals Generated by Fe−N−C in Heterogeneous Electro‐Fenton Reaction for Degradation of Organic Pollutants. ChemistrySelect 2022. [DOI: 10.1002/slct.202200313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wujian Tang
- Anhui Key Laboratory of Chemo-Biosensing College of Chemistry and Materials Science Anhui Normal University 189 Huajin South Road Wuhu 241000 PR China
| | - Nannan Ma
- Anhui Key Laboratory of Chemo-Biosensing College of Chemistry and Materials Science Anhui Normal University 189 Huajin South Road Wuhu 241000 PR China
| | - Chuanqi Fei
- Anhui Key Laboratory of Chemo-Biosensing College of Chemistry and Materials Science Anhui Normal University 189 Huajin South Road Wuhu 241000 PR China
| | - Yinling Wang
- Anhui Key Laboratory of Chemo-Biosensing College of Chemistry and Materials Science Anhui Normal University 189 Huajin South Road Wuhu 241000 PR China
| |
Collapse
|
19
|
Shah SSA, Najam T, Bashir MS, Javed MS, Rahman AU, Luque R, Bao SJ. Identification of Catalytic Active Sites for Durable Proton Exchange Membrane Fuel Cell: Catalytic Degradation and Poisoning Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106279. [PMID: 35338585 DOI: 10.1002/smll.202106279] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Recent progress in synthetic strategies, analysis techniques, and computational modeling assist researchers to develop more active catalysts including metallic clusters to single-atom active sites (SACs). Metal coordinated N-doped carbons (M-N-C) are the most auspicious, with a large number of atomic sites, markedly performing for a series of electrochemical reactions. This perspective sums up the latest innovative and computational comprehension, while giving credit to earlier/pioneering work in carbonaceous assembly materials towards robust electrocatalytic activity for proton exchange membrane fuel cells via inclusive performance assessment of the oxygen reduction reaction (ORR). M-Nx -Cy are exclusively defined active sites for ORR, so there is a unique possibility to intellectually design the relatively new catalysts with much improved activity, selectivity, and durability. Moreover, some SACs structures provide better performance in fuel cells testing with long-term durability. The efforts to understand the connection in SACs based M-Nx -Cy moieties and how these relate to catalytic ORR performance are also conveyed. Owing to comprehensive practical application in the field, this study has covered very encouraging aspects to the current durability status of M-N-C based catalysts for fuel cells followed by degradation mechanisms such as macro-, microdegradation, catalytic poisoning, and future challenges.
Collapse
Affiliation(s)
- Syed Shoaib Ahmad Shah
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Tayyaba Najam
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Muhammad Sohail Bashir
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Aziz-Ur Rahman
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Rafael Luque
- Departamento de Química Orgánica Universidad de Córdoba, Edificio Marie Curie (C-3), Campus de Rabanales, Ctra. Nnal. IV-A, Km 396, Cordoba, E14014, Spain
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str, Moscow, 117198, Russian Federation
| | - Shu-Juan Bao
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
20
|
Liu X, Zhang T, Li X, Ai S, Zhou S. Non-enzymatic electrochemical sensor based on AuNPs/Cu-N-C composite for efficient nitrite sensing in sausage sample. NEW J CHEM 2022. [DOI: 10.1039/d2nj01640k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitrogen-doped carbon materials have attracted enormous attention in the detection fields for the high catalytic activity. Herein, Cu-N-C materials were synthesized by template method and used for constructing non-enzymatic electrochemical...
Collapse
|