1
|
Sarkar UD, Rana M, Chakrapani H. Phenacylselenoesters allow facile selenium transfer and hydrogen selenide generation. Chem Sci 2024; 15:19315-19321. [PMID: 39568918 PMCID: PMC11575540 DOI: 10.1039/d4sc05788k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/26/2024] [Indexed: 11/22/2024] Open
Abstract
Hydrogen selenide (H2Se) is a precursor to several selenium-containing biomolecules and is emerging as an important redox-active species in biology, with yet to be completely characterized roles. Tools that reliably generate H2Se are key to achieving a better understanding of selenium biology. Here, we report the design, synthesis and evaluation of phenacylselenoesters as sources of H2Se. These compounds are prepared in two steps from commercial compounds, some are crystalline solids, and all are stable during storage. In the presence of esterase and a thiol in pH 7.4 buffer, these compounds produce H2Se, with half-lives of 5-20 min. We developed a colorimetric assay for the detection of gaseous H2Se by trapping it as zinc selenide (ZnSe), which is then converted to lead selenide (PbSe), which serves as a convenient visual indicator for this gas. The major organic products that are formed in nearly quantitative yields are relatively benign ketones and carboxylic acids. We provide evidence for these donors producing a thioselenide, a key intermediate in biological selenium metabolism. Finally, we compared sulfur and selenium transfer, both critical processes in cells. Phenacylthiol is relatively stable to cleavage by a thiol, and requires a sulfurtransferase enzyme to produce a persulfide and H2S. By contrast, the selenium analogue reacted with a thiol in the absence of this enzyme to produce H2Se. This result underscores the greater lability of the C-Se bond as compared with a C-S bond, and may have implications in biological selenium transfer. Together, phenacylselenoesters are easy to prepare, stable and generate H2Se under mild and biocompatible conditions. We anticipate that these will be valuable additions to the growing selenium redox toolbox.
Collapse
Affiliation(s)
- Utsav Dey Sarkar
- Department of Chemistry, Indian Institute of Science Education and Research Pune Maharashtra India
| | - Mahima Rana
- Department of Chemistry, Indian Institute of Science Education and Research Pune Maharashtra India
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research Pune Maharashtra India
| |
Collapse
|
2
|
Manna S, Agrawal R, Yadav T, Kumar TA, Kumari P, Dalai A, Kanade S, Balasubramanian N, Singh A, Chakrapani H. Orthogonal Persulfide Generation through Precision Tools Provides Insights into Mitochondrial Sulfane Sulfur. Angew Chem Int Ed Engl 2024; 63:e202411133. [PMID: 39091222 DOI: 10.1002/anie.202411133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 08/04/2024]
Abstract
The sulfane sulfur pool, comprised of persulfide (RS-SH) and polysulfide (RS-SnH) derived from hydrogen sulfide (H2S), has emerged as a major player in redox biochemistry. Mitochondria, besides energy generation, serve as significant cellular redox hubs, mediate stress response and cellular health. However, the effects of endogenous mitochondrial sulfane sulfur (MSS) remain largely uncharacterized as compared with their cytosolic counterparts, cytosolic sulfane sulfur (CSS). To investigate this, we designed a novel artificial substrate for mitochondrial 3-mercaptopyruvate sulfurtransferase (3-MST), a key enzyme involved in MSS biosynthesis. Using cells expressing a mitochondrion-localized persulfide biosensor, we demonstrate this tool's ability to selectively enhance MSS. While H2S was previously known to suppress human immunodeficiency virus (HIV-1), we found that MSS profoundly affected the HIV-1 life cycle, mediating viral reactivation from latency. Additionally, we provide evidence for the role of the host's mitochondrial redox state, membrane potential, apoptosis, and respiration rates in managing HIV-1 latency and reactivation. Together, dynamic fluctuations in the MSS pool have a significant and possibly conflicting effect on HIV-1 viral latency. The precision tools developed herein allow for orthogonal generation of persulfide within both mitochondria and the cytosol and will be useful in interrogating disease biology.
Collapse
Affiliation(s)
- Suman Manna
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, 411008, India
| | - Ragini Agrawal
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Tarun Yadav
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, 411008, India
| | - T Anand Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, 411008, India
| | - Pooja Kumari
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, 411008, India
| | - Aadishakti Dalai
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, 411008, India
| | - Shaunak Kanade
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, 411008, India
| | - Nagaraj Balasubramanian
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, 411008, India
| | - Amit Singh
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, 411008, India
| |
Collapse
|
3
|
Xu BX, Hu TY, Du JB, Xie T, Xu YW, Jin X, Xu ST, Jin HW, Wang G, Wang J, Zhen L. In pursuit of feedback activation: New insights into redox-responsive hydropersulfide prodrug combating oxidative stress. Redox Biol 2024; 72:103130. [PMID: 38522110 PMCID: PMC10973683 DOI: 10.1016/j.redox.2024.103130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024] Open
Abstract
Redox-responsive hydropersulfide prodrugs are designed to enable a more controllable and efficient hydropersulfide (RSSH) supply and to thoroughly explore their biological and therapeutic applications in oxidative damage. To obtain novel activation patterns triggered by redox signaling, we focused on NAD(P)H: quinone acceptor oxidoreductase 1 (NQO1), a canonical antioxidant enzyme, and designed NQO1-activated RSSH prodrugs. We also performed a head-to-head comparison of two mainstream structural scaffolds with solid quantitative analysis of prodrugs, RSSH, and metabolic by-products by LC-MS/MS, confirming that the perthiocarbamate scaffold was more effective in intracellular prodrug uptake and RSSH production. The prodrug was highly potent in oxidative stress management against cisplatin-induced nephrotoxicity. Strikingly, this prodrug possessed potential feedback activation properties by which the delivered RSSH can further escalate the prodrug activation via NQO1 upregulation. Our strategy pushed RSSH prodrugs one step further in the pursuit of efficient release in biological matrices and improved druggability against oxidative stress.
Collapse
Affiliation(s)
- Bi-Xin Xu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China
| | - Tian-Yu Hu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China
| | - Jin-Biao Du
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China
| | - Tao Xie
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China
| | - Ya-Wen Xu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China
| | - Xin Jin
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China
| | - Si-Tao Xu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China
| | - Hao-Wen Jin
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China.
| | - Jiankun Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China.
| | - Le Zhen
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
4
|
Zuo S, Liu T, Li L, Xu H, Guo J, Wang Q, Yang Y, He Z, Sun J, Sun B. Tetrasulfide bond boosts the anti-tumor efficacy of dimeric prodrug nanoassemblies. Cell Rep Med 2024; 5:101432. [PMID: 38387464 PMCID: PMC10982979 DOI: 10.1016/j.xcrm.2024.101432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/11/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024]
Abstract
Dimeric prodrug nanoassemblies (DPNAs) stand out as promising strategies for improving the efficiency and safety of chemotherapeutic drugs. The success of trisulfide bonds (-SSS-) in DPNAs makes polysulfide bonds a worthwhile focus. Here, we explore the comprehensive role of tetrasulfide bonds (-SSSS-) in constructing superior DPNAs. Compared to trisulfide and disulfide bonds, tetrasulfide bonds endow DPNAs with superlative self-assembly stability, prolonged blood circulation, and high tumor accumulation. Notably, the ultra-high reduction responsivity of tetrasulfide bonds make DPNAs a highly selective "tumor bomb" that can be ignited by endogenous reducing agents in tumor cells. Furthermore, we present an "add fuel to the flames" strategy to intensify the reductive stress at tumor sites by replenishing exogenous reducing agents, making considerable progress in selective tumor inhibition. This work elucidates the crucial role of tetrasulfide bonds in establishing intelligent DPNAs, alongside the combination methodology, propelling DPNAs to new heights in potent cancer therapy.
Collapse
Affiliation(s)
- Shiyi Zuo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Tian Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Lingxiao Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Hezhen Xu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Jiayu Guo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Qing Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Yinxian Yang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China.
| | - Bingjun Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China.
| |
Collapse
|
5
|
Yu Y, Chen J, Huang M, Jiang Y, Zhou X, Wang J, Li J, Cao H. Transition-Metal-Free Disulfuration of Amides with Trisulfide Dioxides via Formation of Unaccessible S-S-N Bonds. J Org Chem 2024; 89:3590-3596. [PMID: 38364441 DOI: 10.1021/acs.joc.3c02497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Under transition-metal-free conditions, trisulfide dioxides were used as disulfurating reagents to react with a wide range of amides, affording various substituted N-disulfanyl amides in good yields. Furthermore, the gram-scale experiment has confirmed the practicability of this approach.
Collapse
Affiliation(s)
- Yue Yu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
- Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan, 528437, P. R. China
| | - Jianxin Chen
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Mingzhou Huang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Yuhao Jiang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Xianhang Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Jinsong Wang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Jiaxin Li
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
- Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan, 528437, P. R. China
| |
Collapse
|
6
|
Sawase LR, Kumar TA, Mathew AB, Khodade VS, Toscano JP, Saini DK, Chakrapani H. β-Galactosidase-activated nitroxyl (HNO) donors provide insights into redox cross-talk in senescent cells. Chem Commun (Camb) 2023; 59:12751-12754. [PMID: 37811588 DOI: 10.1039/d3cc03094f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The cross-talk among reductive and oxidative species (redox cross-talk), especially those derived from sulfur, nitrogen and oxygen, influence several physiological processes including aging. One major hallmark of aging is cellular senescence, which is associated with chronic systemic inflammation. Here, we report a chemical tool that generates nitoxyl (HNO) upon activation by β-galactosidase, an enzyme that is over-expressed in senescent cells. In a radiation-induced senescence model, the HNO donor suppressed reactive oxygen species (ROS) in a hydrogen sulfide (H2S)-dependent manner. Hence, the newly developed tool provides insights into redox cross-talk and establishes the foundation for new interventions that modulate levels of these species to mitigate oxidative stress and inflammation.
Collapse
Affiliation(s)
- Laxman R Sawase
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Pune 411 008, Maharashtra, India.
| | - T Anand Kumar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Pune 411 008, Maharashtra, India.
| | - Abraham B Mathew
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Vinayak S Khodade
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - John P Toscano
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Deepak K Saini
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Pune 411 008, Maharashtra, India.
| |
Collapse
|
7
|
Rao SP, Dobariya P, Bellamkonda H, More SS. Role of 3-Mercaptopyruvate Sulfurtransferase (3-MST) in Physiology and Disease. Antioxidants (Basel) 2023; 12:antiox12030603. [PMID: 36978851 PMCID: PMC10045210 DOI: 10.3390/antiox12030603] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
3-mercaptopyruvate sulfurtransferase (3-MST) plays the important role of producing hydrogen sulfide. Conserved from bacteria to Mammalia, this enzyme is localized in mitochondria as well as the cytoplasm. 3-MST mediates the reaction of 3-mercaptopyruvate with dihydrolipoic acid and thioredoxin to produce hydrogen sulfide. Hydrogen sulfide is also produced through cystathionine beta-synthase and cystathionine gamma-lyase, along with 3-MST, and is known to alleviate a variety of illnesses such as cancer, heart disease, and neurological conditions. The importance of cystathionine beta-synthase and cystathionine gamma-lyase in hydrogen sulfide biogenesis is well-described, but documentation of the 3-MST pathway is limited. This account compiles the current state of knowledge about the role of 3-MST in physiology and pathology. Attempts at targeting the 3-MST pathway for therapeutic benefit are discussed, highlighting the potential of 3-MST as a therapeutic target.
Collapse
|
8
|
Lao T, Chen J, Zhou X, Zhang Z, Cao G, Su Z, Yu Y, Cao H. Visible-light-induced synthesis of N-disulfanyl indoles, pyrroles or carbazoles via the construction of stable S-S-N bonds. Chem Commun (Camb) 2023; 59:458-461. [PMID: 36519391 DOI: 10.1039/d2cc04616d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A simple and efficient visible-light-induced approach for the formation of stable S-S-N bonds has been developed. Through these photocatalytic reactions, a series of N-disulfanyl indoles, pyrroles and carbazoles were afforded with good to excellent yields. Moreover, the gram-scale experiment has confirmed the practicability of this approach.
Collapse
Affiliation(s)
- Tianfeng Lao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Jianxin Chen
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Xianhang Zhou
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Ziwu Zhang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Gao Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Zhengquan Su
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Yue Yu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China. .,Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan 528437, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China. .,Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan 528437, China
| |
Collapse
|
9
|
Bora P, Sathian MB, Chakrapani H. Enhancing cellular sulfane sulfur through β-glycosidase-activated persulfide donors: mechanistic insights and oxidative stress mitigation. Chem Commun (Camb) 2022; 58:2987-2990. [PMID: 35147153 DOI: 10.1039/d1cc07162a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sulfane sulfur species such as persulfides and polysulfides along with hydrogen sulfide protect cells from oxidative stress and are key members of the cellular antioxidant pool. Here, we report perthiocarbamate-based prodrugs that are cleaved by β-glycosidases to produce persulfide and relatively innocuous byproducts. The β-glucosidase-activated persulfide donor enhances cellular sulfane sulfur and protects cells against lethality induced by elevated reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Prerona Bora
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune 411 008, Maharashtra, India.
| | - Manjima B Sathian
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune 411 008, Maharashtra, India.
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune 411 008, Maharashtra, India.
| |
Collapse
|
10
|
Ye H, Cheng L, Tu X, Wang DW, Yi L. Rational design of a dual-reactive probe for imaging the biogenesis of both H2S and GSH from L-Cys rather than D-Cys in live cells. RSC Chem Biol 2022; 3:848-852. [PMID: 35866170 PMCID: PMC9257618 DOI: 10.1039/d2cb00105e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022] Open
Abstract
Biothiols and their interconversion are involved in cellular redox homestasis as well as many physiological processes. Here, a dual-reactive dual-quenching fluorescent probe was rationally developed based on thiolysis reactions of...
Collapse
Affiliation(s)
- Haishun Ye
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT) Beijing 100029 China
| | - Longhuai Cheng
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, National Pesticide Engineering Research Center, Nankai University Tianjin 300071 China
| | - Xiaoqiang Tu
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT) Beijing 100029 China
| | - Da-Wei Wang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, National Pesticide Engineering Research Center, Nankai University Tianjin 300071 China
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT) Beijing 100029 China
| |
Collapse
|