1
|
Hohenadel M, Ebel B, Oppel IM, Patureau FW. Oxidative N-N Bond Formation Versus the Curtius Rearrangement. Chemistry 2024; 30:e202402355. [PMID: 38963800 DOI: 10.1002/chem.202402355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
The oxidative formation of N-N bonds from primary amides has been recently reported and then retracted in the journal Nature Communications by Kathiravan, Nicholls, and co-authors, utilizing a hypervalent iodane reagent. Unfortunately, the authors failed to recognize the Curtius reaction taking place under the described reaction conditions. Thus, the claimed N-N coupling products were not formed. Instead, the Curtius rearrangement urea coupling products were obtained. We demonstrate this herein by means of NMR and x-ray analysis, as well as with the support of an alternative synthetic route.
Collapse
Affiliation(s)
- Melissa Hohenadel
- Institutes of Organic and Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Ben Ebel
- Institutes of Organic and Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Iris M Oppel
- Institutes of Organic and Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Frederic W Patureau
- Institutes of Organic and Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
2
|
Fang W, Luo ZW, Wang YC, Zhou W, Li L, Chen Y, Zhang X, Dai M, Dai JJ. S N2 Reaction at the Amide Nitrogen Center Enables Hydrazide Synthesis. Angew Chem Int Ed Engl 2024; 63:e202317570. [PMID: 38366960 DOI: 10.1002/anie.202317570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/18/2024] [Accepted: 02/16/2024] [Indexed: 02/19/2024]
Abstract
Nucleophilic substitutions are fundamentally important transformations in synthetic organic chemistry. Despite the substantial advances in bimolecular nucleophilic substitutions (SN2) at saturated carbon centers, analogous SN2 reaction at the amide nitrogen atom remains extremely limited. Here we report an SN2 substitution method at the amide nitrogen atom with amine nucleophiles for nitrogen-nitrogen (N-N) bond formation that leads to a novel strategy toward biologically and medicinally important hydrazide derivatives. We found the use of sulfonate-leaving groups at the amide nitrogen atom played a pivotal role in the reaction. This new N-N coupling reaction allows the use of O-tosyl hydroxamates as electrophiles and readily available amines, including acyclic aliphatic amines and saturated N-heterocycles as nucleophiles. The reaction features mild conditions, broad substrate scope (>80 examples), excellent functional group tolerability, and scalability. The method is applicable to late-stage modification of various approved drug molecules, thus enabling complex hydrazide scaffold synthesis.
Collapse
Affiliation(s)
- Wen Fang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zhi-Wen Luo
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Ye-Cheng Wang
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Wei Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Lei Li
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Yimin Chen
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiangke Zhang
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Mingji Dai
- Department of Chemistry, Emory University, Atlanta, GA, USA
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Jian-Jun Dai
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
3
|
Zhu SY, He WJ, Shen GC, Bai ZQ, Song FF, He G, Wang H, Chen G. Ligand-Promoted Iron-Catalyzed Nitrene Transfer for the Synthesis of Hydrazines and Triazanes through N-Amidation of Arylamines. Angew Chem Int Ed Engl 2024; 63:e202312465. [PMID: 37997539 DOI: 10.1002/anie.202312465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
Herein, we report that bulky alkylphosphines such as PtBu3 can switch the roles from actor to spectator ligands to promote the FeCl2 -catalyzed N-amidation reaction of arylamines with dioxazolones, giving hydrazides in high efficiency and chemoselectivity. Mechanistic studies indicated that the phosphine ligands could facilitate the decarboxylation of dioxazolones on the Fe center, and the hydrogen bonding interactions between the arylamines and the ligands on Fe nitrenoid intermediates might play a role in modulating the delicate interplay between the phosphine ligand, arylamine, and acyl nitrene N, favoring N-N coupling over N-P coupling. The new ligand-promoted N-amidation protocols offer a convenient way to access various challenging triazane compounds via double or sequential N-amidation of primary arylamines.
Collapse
Affiliation(s)
- Shi-Yang Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wen-Ji He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Guan-Chi Shen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zi-Qian Bai
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Fang-Fang Song
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Hao Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
4
|
Barbor JP, Nair VN, Sharp KR, Lohrey TD, Dibrell SE, Shah TK, Walsh MJ, Reisman SE, Stoltz BM. Development of a Nickel-Catalyzed N-N Coupling for the Synthesis of Hydrazides. J Am Chem Soc 2023. [PMID: 37413695 PMCID: PMC10360072 DOI: 10.1021/jacs.3c04834] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
A nickel-catalyzed N-N cross-coupling for the synthesis of hydrazides is reported. O-Benzoylated hydroxamates were efficiently coupled with a broad range of aryl and aliphatic amines via nickel catalysis to form hydrazides in an up to 81% yield. Experimental evidence implicates the intermediacy of electrophilic Ni-stabilized acyl nitrenoids and the formation of a Ni(I) catalyst via silane-mediated reduction. This report constitutes the first example of an intermolecular N-N coupling compatible with secondary aliphatic amines.
Collapse
Affiliation(s)
- Jay P Barbor
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Vaishnavi N Nair
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Kimberly R Sharp
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Trevor D Lohrey
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Sara E Dibrell
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Tejas K Shah
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Martin J Walsh
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Sarah E Reisman
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Brian M Stoltz
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
5
|
Panjacharam P, Ulabala V, Jayakumar J, Rajasekhara Reddy S. Emerging trends in the sustainable synthesis of N-N bond bearing organic scaffolds. Org Biomol Chem 2023; 21:2632-2652. [PMID: 36883312 DOI: 10.1039/d3ob00300k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
N-N bond bearing organic frameworks such as azos, hydrazines, indazoles, triazoles and their structural moieties have piqued the interest of organic chemists due to the intrinsic nitrogen electronegativity. Recent methodologies with atom efficacy and a greener approach have overcome the synthetic obstacles of N-N bond construction from N-H. As a result, a wide range of amine oxidation methods have been reported early on. This review's vision emphasizes the emerging methods of N-N bond formation, particularly photo, electro, organo and transition metal free chemical methods.
Collapse
Affiliation(s)
| | - Vijayasree Ulabala
- Department of Chemistry, Rajiv Gandhi University of Knowledge Technology (RGUKT), Nuzvid 521202, India.
| | | | | |
Collapse
|
6
|
Balakrishna B, Mossin S, Kramer S. Photo-induced metal-free dehydrogenative N-N homo-coupling. Chem Commun (Camb) 2022; 58:10977-10980. [PMID: 36093722 DOI: 10.1039/d2cc04204e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a photo-induced dehydrogenative N-N coupling of diarylimines, diarylamines, carbazoles, and anilines. These homo-coupling reactions require only the combination of readily available di-tert-butyl peroxide (DTBP) and light irradition. The operationally simple protocol works under catalyst- and metal-free conditions and exhibits a good substrate scope. Preliminary mechanistic studies indicate that the reaction proceeds via photo-induced homolytic cleavage of the peroxide followed by hydrogen atom transfer leading to the formation of N-centered radicals.
Collapse
Affiliation(s)
- Bugga Balakrishna
- Department of Chemistry, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| | - Susanne Mossin
- Department of Chemistry, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| | - Søren Kramer
- Department of Chemistry, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
7
|
Wang Y, Yang M, Lao C, Jiang Z. Potassium-Base-Mediated Autoxidative Diastereoselective Homocoupling of N-Acyl-2-aminoacetophenones. Org Lett 2022; 24:2625-2629. [PMID: 35380842 DOI: 10.1021/acs.orglett.2c00618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We herein report a general and highly efficient method for the synthesis of dl-2,3-diamide-1,4-diones via autoxidative dehydrogenative homocoupling of N-acyl-2-aminoacetophenones mediated by t-BuOK. The transformation is mild, operationally simple, and environmentally friendly. Control experiments and stereochemical results suggest that the substrate undergoes autoxidation followed by a diastereoselective SN2 reactopm.
Collapse
Affiliation(s)
- Yingwei Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
| | - Mingrong Yang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
| | - Chichou Lao
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
8
|
Baidya M, Mallick S, De Sarkar S. Regioselective Synthesis of N2-Aryl 1,2,3-Triazoles via Electro-oxidative Coupling of Enamines and Aryldiazonium Salts. Org Lett 2022; 24:1274-1279. [PMID: 35112868 DOI: 10.1021/acs.orglett.1c04099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An efficient synthetic route for the construction of N2-aryl 1,2,3-triazoles is reported via sequential C-N bond formation and electro-oxidative N-N coupling under metal-free conditions. Readily accessible 2-aminoacrylates and aryldiazonium salts were used as starting materials, and the developed protocol displays excellent functional group tolerance, allowing an extensive range of substrate scope up to 91% isolated yield. Various mechanistic studies, along with the isolation of an intermediate adduct, refer to successive ionic and radical reaction sequences.
Collapse
Affiliation(s)
- Mrinmay Baidya
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Samrat Mallick
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|