1
|
Gao S, Liu J, Troya D, Chen M. Copper-Catalyzed Asymmetric Acylboration of 1,3-Butadienylboronate with Acyl Fluorides. Angew Chem Int Ed Engl 2023; 62:e202304796. [PMID: 37712934 PMCID: PMC11144059 DOI: 10.1002/anie.202304796] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Indexed: 09/16/2023]
Abstract
We report herein a Cu-catalyzed regio-, diastereo- and enantioselective acylboration of 1,3-butadienylboronate with acyl fluorides. Under the developed conditions, the reactions provide (Z)-β,γ-unsaturated ketones bearing an α-tertiary stereocenter with high Z-selectivity and excellent enantioselectivities. While direct access to highly enantioenriched E-isomers was not successful, we showed that such molecules can be synthesized with excellent E-selectivity and optical purities via Pd-catalyzed alkene isomerization from the corresponding Z-isomers. The orthogonal chemical reactivities of the functional groups embedded in the ketone products allow for diverse chemoselective transformations, which provides a valuable platform for further derivatization.
Collapse
Affiliation(s)
- Shang Gao
- Department of Chemistry and Biochemistry, Auburn University, 36849 Auburn, AL (USA); Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 210009 Nanjing, (China)
| | - Jiaming Liu
- Department of Chemistry and Biochemistry, Auburn University, 36849 Auburn, AL (USA)
| | - Diego Troya
- Department of Chemistry, Virginia Tech, 24061 Blacksburg, VA (USA)
| | - Ming Chen
- Department of Chemistry and Biochemistry, Auburn University, 36849 Auburn, AL (USA)
| |
Collapse
|
2
|
Liu J, Chen M. Stereoselective syntheses of 2-methyl-1,3-diol acetals via Re-catalyzed [1,3]-allylic alcohol transposition. Chem Sci 2023; 14:8103-8108. [PMID: 37538826 PMCID: PMC10395275 DOI: 10.1039/d2sc07059f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 07/01/2023] [Indexed: 08/05/2023] Open
Abstract
Rhenium-catalyzed stereoselective transposition of allylic alcohols is reported. In the presence of 1 mol% of Re2O7, (E)- or (Z)-δ-hydroxymethyl-anti-homoallylic alcohols were converted into the acetals of 2-methyl-1,3-syn-diols with excellent diastereoselectivities. 1,3-syn-Diol acetals can also be synthesized from (E)-δ-hydroxymethyl-syn-homoallylic alcohols.
Collapse
Affiliation(s)
- Jiaming Liu
- Department of Chemistry and Biochemistry, Auburn University Auburn AL 36849 USA
| | - Ming Chen
- Department of Chemistry and Biochemistry, Auburn University Auburn AL 36849 USA
| |
Collapse
|
3
|
Braire J, Macé A, Zaier R, Cordier M, Vidal J, Lalli C, Martel A, Carreaux F. Catalytic Enantioselective Allylboration and Related Reactions of Isatins Promoted by Chiral BINOLs: Scope and Mechanistic Studies. J Org Chem 2023; 88:1469-1492. [PMID: 36690446 DOI: 10.1021/acs.joc.2c02476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An improvement in the catalytic enantioselective allylboration of isatins with 2-allyl-1,3,2-dioxaborolane in the presence of chiral BINOL derivatives is reported, offering an efficient one-step access to enantioenriched N-unprotected 3-allyl-3-hydroxy-2-oxindoles. This catalytic process is also effective for the crotylboration reaction with enantiomeric ratios (er) up to 97:3, as well as for the asymmetric synthesis of homopropargylic alcohols via an allenyl addition to indoline-2,3-diones. Origins of the high enantioselectivity in chiral BINOL-catalyzed allylboration of isatins were examined by DFT calculations. A hypothetical scenario suggested a crucial internal hydrogen bonding between the amide group (C═O···H-O) and the ethylene hydroxyl of the transient chiral mixed boronate ester, generating a rigid and stabilized system that favors the addition of the allylboron species to the Re face of the ketone function. The key role of the alcohol additive (t-BuOH or t-AmOH) in the enantioselective allylboration reaction of isatins has also been shown on the basis of a kinetics study and computational calculations by favoring the transesterification of the 2-allyl-1,3,2-dioxaborolane with BINOL via proton transfer processes.
Collapse
Affiliation(s)
- Julien Braire
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Aurélie Macé
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Rania Zaier
- Institut des Molécules et Matériaux du Mans, UMR 6283 CNRS-Université du Maine, Avenue Olivier Messiaen, 72085 Cedex Le Mans, France
| | - Marie Cordier
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Joëlle Vidal
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Claudia Lalli
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Arnaud Martel
- Institut des Molécules et Matériaux du Mans, UMR 6283 CNRS-Université du Maine, Avenue Olivier Messiaen, 72085 Cedex Le Mans, France
| | - François Carreaux
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| |
Collapse
|
4
|
Lee Y, Lee H, Lee Y, Cho S, Lee J, Kang J, Jung B, Lee Y. Synthesis of α-Borylmethyl-( E)-allylborons via Cu-Catalyzed Diboration of 1-Substituted Allenols and Their Application in Stereoselective Aldehyde Allylation. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Yeonjoo Lee
- Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea
| | - Hwiwoong Lee
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Yurim Lee
- Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea
| | - Soohong Cho
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Juhyung Lee
- Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea
| | - Joongoo Kang
- Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea
| | - Byunghyuck Jung
- Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea
| | - Yunmi Lee
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
5
|
Gao S, Duan M, Andreola LR, Yu P, Wheeler SE, Houk KN, Chen M. Unusual Enantiodivergence in Chiral Brønsted Acid‐Catalyzed Asymmetric Allylation with β‐Alkenyl Allylic Boronates. Angew Chem Int Ed Engl 2022; 61:e202208908. [PMID: 35989224 DOI: 10.1002/anie.202208908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Indexed: 11/11/2022]
Abstract
We report herein a rare example of enantiodivergent aldehyde addition with β-alkenyl allylic boronates via chiral Brønsted acid catalysis. 2,6-Di-9-anthracenyl-substituted chiral phosphoric acid-catalyzed asymmetric allylation using β-vinyl substituted allylic boronate gave alcohols with R absolute configuration. The sense of asymmetric induction of the catalyst in these reactions is opposite to those in prior reports. Moreover, in the presence of the same acid catalyst, the reactions with β-2-propenyl substituted allylic boronate generated homoallylic alcohol products with S absolute configuration. Unusual substrate-catalyst C-H⋅⋅⋅π interactions in the favoured reaction transition state were identified as the origins of observed enantiodivergence through DFT computational studies.
Collapse
Affiliation(s)
- Shang Gao
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
- China Pharmaceutical University Nanjing 210009 China
| | - Meng Duan
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
- Department of Chemistry and Shenzhen Grubbs Institute Southern University of Science and Technology Shenzhen 518055 China
| | | | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute Southern University of Science and Technology Shenzhen 518055 China
| | | | - Kendall N. Houk
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Ming Chen
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| |
Collapse
|
6
|
Gao S, Duan M, Andreola LR, Yu P, Wheeler SE, Houk KN, Chen M. Unusual Enantiodivergence in Chiral Brønsted Acid‐Catalyzed Asymmetric Allylation with β‐Alkenyl Allylic Boronates. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shang Gao
- Auburn University Chemistry and Biochemistry UNITED STATES
| | - Meng Duan
- University of California Los Angeles Chemistry and Biochemistry UNITED STATES
| | | | - Peiyuan Yu
- Southern University of Science and Technology Chemistry CHINA
| | | | - Kendall N. Houk
- University of California Los Angeles Chemistry and Biochemistry UNITED STATES
| | - Ming Chen
- Auburn University Chemistry and Biochemistry 179 chemistry building 36849 Auburn UNITED STATES
| |
Collapse
|
7
|
Viso A, Fernández de la Pradilla R, Tortosa M. Site-Selective Functionalization of C(sp 3) Vicinal Boronic Esters. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alma Viso
- Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | | | - Mariola Tortosa
- Departamento de Química Orgánica and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
8
|
Yuan J, Jain P, Antilla JC. Chiral Phosphoric Acid-Catalyzed Enantio- and Diastereoselective Allylboration of Aldehydes with β,γ-Substituted Allylboronates. J Org Chem 2022; 87:8256-8266. [PMID: 35657081 DOI: 10.1021/acs.joc.2c00764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The catalytic asymmetric addition of β,γ-substituted allylboronates to aldehydes has been described. Promoted by 5 mol % chiral phosphoric acid, the reactions were broadly applicable, scalable, and efficient, allowing for the formation of 3,4-anti/syn-homoallylic alcohols bearing adjacent tertiary or quaternary stereogenic centers in a highly enantio- and diastereoselective manner (≤99% ee and dr >20:1). The rigid chairlike transition state involving the chiral phosphoric acid contributed to the highly controlled reaction.
Collapse
Affiliation(s)
- Jinping Yuan
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Pankaj Jain
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Jon C Antilla
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China.,School of Science, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| |
Collapse
|
9
|
Liu J, Gao S, Chen M. Development of α-Borylmethyl-( Z)-crotylboronate Reagent and Enantioselective Syntheses of ( E)-δ-Hydroxymethyl- syn-homoallylic Alcohols via Highly Stereoselective Allylboration. Org Lett 2021; 23:9451-9456. [PMID: 34860521 DOI: 10.1021/acs.orglett.1c03628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report herein the development of α-borylmethyl-(Z)-crotylboronate reagent and the application in highly stereo- and enantioselective syntheses of (E)-δ-hydroxymethyl-syn-homoallylic alcohols. Starting from 1,4-pentadiene, α-borylmethyl-(Z)-crotylboronate was synthesized in two steps with high Z-selectivity and enantioselectivity. Subsequent aldehyde allylboration with the developed boron reagent gave highly enantioenriched (E)-δ-hydroxymethyl-syn-homoallylic alcohols upon oxidative workup.
Collapse
Affiliation(s)
- Jiaming Liu
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Shang Gao
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Ming Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|