1
|
Chen F, Lv X, Kuzuhara D, Zhang T, Pan J, Qiu F, Teranishi T, Xue S. Effect of Peripheral Functionalization of Pt(II) Porphyrin(2.1.2.1) on Singlet Oxygen Generation. Inorg Chem 2024; 63:21025-21030. [PMID: 39438275 DOI: 10.1021/acs.inorgchem.4c02924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Four structurally bent porphyrin(2.1.2.1) Pt(II) complexes have been obtained and verified well. Main absorbance of Pt(II) porphyrin(2.1.2.1) displayed a significant red-shift compared to that of porphyrin(1.1.1.1) Pt(II) molecules. 1O2 study indicated that electron-withdrawing group and intramolecular charge transfer effect synergistically endowed Pt(II) porphyrin(2.1.2.1) with good singlet oxygen-sensitizing capacity under blue LED light irradiation. This work presents a simple synthesis way to develop a new series of efficient porphyrinoid singlet oxygen photosensitizers for PDT through molecular engineering.
Collapse
Affiliation(s)
- Feng Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xiaojuan Lv
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Daiki Kuzuhara
- Department of Physical Science and Materials Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551, Japan
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Toshiharu Teranishi
- Graduate School of Science and Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| |
Collapse
|
2
|
Jiang Y, Huang S, Ma H, Weng J, Du X, Lin Z, Kim J, You W, Zhang H, Wang D, Kim JS, Sun H. RNA-Activatable Near-Infrared Photosensitizer for Cancer Therapy. J Am Chem Soc 2024; 146:25270-25281. [PMID: 39215718 DOI: 10.1021/jacs.4c09470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Photodynamic therapy (PDT) has recently come to the forefront as an exceptionally powerful and promising method for the treatment of cancer. Existing photosensitizers are predominantly engineered to target diverse biomolecules, including proteins, DNA, lipids, and carbohydrates, and have proven to greatly enhance the efficacy or specificity of PDT. However, it is noteworthy that there exists a conspicuous scarcity of photosensitizers specifically designed to target RNAs. Recognizing the crucial and multifaceted roles played by RNAs in various cellular processes and disease states, we have ventured into the development of a novel RNA-targeting photosensitizer, named Se-718, designed specifically for PDT-based cancer therapy. Se-718 has been engineered to exhibit a high molar absorption coefficient in the NIR region, which is crucial for effective PDT. More importantly, Se-718 has demonstrated a distinct RNA-targeting capability, as evidenced through rigorous testing in both circular dichroism and fluorescence experiments. Furthermore, Se-718 has been shown to display both type I and type II photodynamic properties. This unique characteristic enables the efficient killing of cancer cells under a wide range of oxygen conditions, both normoxic (21% O2) and hypoxic (2% O2). The IC50 of Se-718 can be as low as 100 nM, and its light-to-dark toxicity ratio is an impressive 215 times higher, outperforming most photosensitizers currently available. Moreover, in vivo studies conducted with tumor-bearing mice have demonstrated the excellent antitumor effects and high safety profile of Se-718. Considering the outstanding PDT efficacy of Se-718, we are optimistic that the development of RNA-targeting photosensitizers may provide an innovative and highly effective option for cancer therapeutics in the near future.
Collapse
Affiliation(s)
- Yin Jiang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Shumei Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon ,Hong Kong999077, China
| | - Haiying Ma
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangdong510000, China
| | - Jintao Weng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Xiaomeng Du
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Zhenxin Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Jaewon Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Wenhui You
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Huatang Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang ,Guangdong522000,China
| | - Dongqing Wang
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon ,Hong Kong999077, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Hongyan Sun
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon ,Hong Kong999077, China
| |
Collapse
|
3
|
Zhao X, Du J, Sun W, Fan J, Peng X. Regulating Charge Transfer in Cyanine Dyes: A Universal Methodology for Enhancing Cancer Phototherapeutic Efficacy. Acc Chem Res 2024; 57:2582-2593. [PMID: 39152945 DOI: 10.1021/acs.accounts.4c00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
ConspectusDue to the advantages of spatiotemporal selectivity and inherent noninvasiveness, cancer phototherapy, which includes both photodynamic therapy (PDT) and photothermal therapy (PTT), has garnered significant attention in recent years as a promising cancer treatment. Despite the commendable progress in this field, persistent challenges remain. In PDT, limitations in dyes manifest as low intersystem crossing (ISC) efficiency and oxygen-dependent photoactivity, resulting in unsatisfactory performance, particularly under hypoxic conditions. Similarly, PTT encounters consistent insufficiencies in the photothermal conversion efficiency (PCE) of dyes. Additionally, the suboptimal phototherapeutic efficacy often exhibits a limited immune response. These factors collectively impose significant constraints on phototherapy in oncological applications, leading to limited tumor inhibition, tumor recurrence, and even metastasis.Unlike strategies that rely on external assistance with complicated systems, manipulating excited-state deactivation pathways in biocompatible dyes offers a universal way to systematically address these challenges. Our group has devoted considerable effort to achieving this goal. In this Account, we present and discuss our journey in optimizing excited-state energy-release pathways through regulating molecular charge transfer based on cyanine dyes, which are renowned for their exceptional photophysical properties and harmonious biocompatibility. The investigation begins with the introduction of amino groups in the meso position of a heptamethine cyanine dye, where the intramolecular charge transfer (ICT) effect causes a significant enlargement of the Stokes shift. Subsequently, ICT induced by introducing functional electron-deficient groups in cyanines is found to decrease the overlap of electron distribution or narrow the energy gaps of molecular frontier orbitals. Such modifications result in a reduction of the energy gaps between singlet and triplet states or an improvement in internal conversion, ultimately promoting phototherapy efficacy in both primary and distant tumors. Furthermore, with the intensification of the charge transfer effect aided by light, photoinduced intramolecular electron transfer occurs in some cyanines, leading to complete charge separation in the excited state. This process enhances the transition to the ground or triplet states, improving tumor phototherapy and inhibiting metastasis by increasing the PCE or the yield of reactive oxygen species, respectively. Shifting focus from intramolecular to intermolecular interactions, we successfully constructed and explored cyanines based on intermolecular charge transfer. These dyes, with excited-state dynamics mimicking natural photosynthesis, generate radicals and facilitate oxygen-independent hypoxic tumor PDT. Finally, we outlined the existing challenges and future directions for optimizing phototherapeutic efficacy by regulating molecular charge transfer. This Account provides molecular-level insights into improving phototherapeutic performance, offering valuable perspectives, and inspiring the development of functional dyes in other application fields.
Collapse
Affiliation(s)
- Xueze Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, China
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, China
- Ningbo Institute of Dalian University of Technology, No. 26 Yucai Road, 315016 Ningbo, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, China
| |
Collapse
|
4
|
Li Y, Wang X, Zhao Y, Wang X, Xue K, Yang L, Deng J, Sun S, Qi Z. Designing NIR AIEgens for lysosomes targeting and efficient photodynamic therapy of tumors. Bioorg Chem 2024; 150:107551. [PMID: 38971094 DOI: 10.1016/j.bioorg.2024.107551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 07/08/2024]
Abstract
Cancer is the most severe health problem facing most people today. Photodynamic therapy (PDT) for tumors has attracted attention because of its non-invasive nature, negligible adverse reactions, and high spatiotemporal selectivity. Developing biocompatible photosensitizers that can target, guide, and efficiently kill cancer cells is desirable in PDT. Here, two amphiphilic organic compounds, PS-I and PSS-II, were synthesized based on the D-π-A structure with a positive charge. The two AIEgens exhibited near-infrared emission, large Stokes shift, high 1O2 and O2-∙ generation efficiency, good biocompatibility, and photostability. They were co-incubated with cancer cells and eventually accumulated to lysosomes by cell imaging experiments. In vitro and in vivo experiments demonstrated that PS-I and PSS-II could effectively kill cancer cells and sufficiently inhibit tumor growth under light irradiation. PS-I had a higher fluorescence quantum yield in the aggregated state, which made it better for bio-imaging in imaging-guided photodynamic therapy. In contrast, PSS-II with a longer conjugated structure had more ROS generation to kill tumor cells under illumination, and the tumor growth inhibition of mice reached 71.95% during the treatment. No observable injury or undesirable outcomes were detected in the vital organs of the mice within the treatment group, suggesting that PSS-II/PS-I had a promising future in efficient imaging-guided PDT for cancer.
Collapse
Affiliation(s)
- Yuanhang Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Xing Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Yongfei Zhao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Xiaohan Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Ke Xue
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Li Yang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Jing Deng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Saidong Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Zhengjian Qi
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China.
| |
Collapse
|
5
|
Tao YK, Tseng YW, Tzou KY, Kuo CY, Nguyen HT, Lu HT, Chuang AEY. Advancing teeth whitening efficacy via dual-phototherapeutic strategy incorporating molybdenum disulfide embedded in carrageenan hydrogel for dental healthcare. Int J Biol Macromol 2024; 276:133647. [PMID: 38964693 DOI: 10.1016/j.ijbiomac.2024.133647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
Teeth discoloration poses a widespread challenge in dental health across various regions. Conventional teeth whitening methods often result in enamel deterioration and soft tissue harm due to the utilization of incompatible whitening agents and continuous intense light exposure. Here, we propose an effective phototherapy technique for teeth whitening, employing pathways of energy transition through intersystem crossing. The integration of MoS2 nanosheets into carrageenan gel (MoS2 NSs@Carr) facilitates both photothermal-hyperthermia and the generation of reactive oxygen species (ROS) through photocatalytic processes. The efficacy of ROS generation by the phototherapeutic MoS2 NSs@Carr on teeth whitening in the scenario. This approach ensures comprehensive teeth whitening by eliminating deep-seated stains on the teeth while preserving structural integrity and avoiding any tissue toxicity. This research highlights the efficacy of the phototherapeutic MoS2 NSs@Carr for dental whitening and underscores the potential of exploring nanostructures based on MoS2 NSs for managing dental healthcare issue.
Collapse
Affiliation(s)
- Yu-Kuang Tao
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Wen Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Kai-Yi Tzou
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Taipei Medical University Research Centre of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
| | - Chun-Yuan Kuo
- Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, Taipei 110301, Taiwan; School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110301, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Hsien-Tsung Lu
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam; Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University, Wan Fang Hospital, Taipei 11696, Taiwan.
| |
Collapse
|
6
|
Zhai Y, Zhang X, Chen Z, Yan D, Zhu L, Zhang Z, Wang X, Tian K, Huang Y, Yang X, Sun W, Wang D, Tsai YH, Luo T, Li G. Global profiling of functional histidines in live cells using small-molecule photosensitizer and chemical probe relay labelling. Nat Chem 2024; 16:1546-1557. [PMID: 38834725 DOI: 10.1038/s41557-024-01545-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 04/26/2024] [Indexed: 06/06/2024]
Abstract
Recent advances in chemical proteomics have focused on developing chemical probes that react with nucleophilic amino acid residues. Although histidine is an attractive candidate due to its importance in enzymatic catalysis, metal binding and protein-protein interaction, its moderate nucleophilicity poses challenges. Its modification is frequently influenced by cysteine and lysine, which results in poor selectivity and narrow proteome coverage. Here we report a singlet oxygen and chemical probe relay labelling method that achieves high selectivity towards histidine. Libraries of small-molecule photosensitizers and chemical probes were screened to optimize histidine labelling, enabling histidine profiling in live cells with around 7,200 unique sites. Using NMR spectroscopy and X-ray crystallography, we characterized the reaction mechanism and the structures of the resulting products. We then applied this method to discover unannotated histidine sites key to enzymatic activity and metal binding in select metalloproteins. This method also revealed the accessibility change of histidine mediated by protein-protein interaction that influences select protein subcellular localization, underscoring its capability in discovering functional histidines.
Collapse
Affiliation(s)
- Yansheng Zhai
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Xinyu Zhang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, China
| | - Zijing Chen
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | | | - Lin Zhu
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Zhe Zhang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xianghe Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Kailu Tian
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yan Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Xi Yang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Dong Wang
- Shenzhen University, Shenzhen, China
| | - Yu-Hsuan Tsai
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Tuoping Luo
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Gang Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
7
|
Zhang L, Zhang Q, Cao Z. Orthogonal Geometry Enhancing the Intersystem Crossing and Photosensitive Efficiency of Spiro Organoboron Compounds. Chemistry 2024:e202402606. [PMID: 39150690 DOI: 10.1002/chem.202402606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/01/2024] [Accepted: 08/16/2024] [Indexed: 08/17/2024]
Abstract
Based on the reported spiro organoboron compounds (PS1 and PS2 as potent 1O2 sensitizers), several new organoboron molecules (PS4-PS9) were constructed through structural modification, and their low-lying excited states and photophysical properties have been explored by density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. The predicted effective intersystem crossing (ISC) processes arise from the S1→T2 transition for PS4-PS6 and the S1→T4 transition for PS1, and corresponding KISC rate constants reach the order of magnitude of 109 (s-1). The organoboron compounds with a (N, N) chelate acceptor are predicted to exhibit relatively higher ISC efficiency than those bearing a (N, O) acceptor, and the planar C3NBN ring and the orthogonal configuration between the donor and acceptor moieties are responsible for the ISC rate enhancement. Importantly, the geometric features of the lowest singlet excited state (S1) for these compounds play a decisive role in their photosensitive efficiency. The present results provide a basis for better understanding of the photosensitivity of these spiro organoboron compounds and the structural modification effect.
Collapse
Affiliation(s)
- Lin Zhang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 360015, P. R. China
| | - Qing Zhang
- Department of Materials Chemistry, Huzhou University, Huzhou, 313000, P. R. China
| | - Zexing Cao
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 360015, P. R. China
| |
Collapse
|
8
|
Wang R, Hua S, Xing Y, Wang R, Wang H, Jiang T, Yu F. Organic dye-based photosensitizers for fluorescence imaging-guided cancer phototheranostics. Coord Chem Rev 2024; 513:215866. [DOI: 10.1016/j.ccr.2024.215866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
|
9
|
Lv X, Dong Y, Wu J, Jiang T, Chen F, Zhang T, Qiu F, Xue S. Porphyrin(2.1.2.1) organopalladium complexes as efficient singlet oxygen sensitizers. Dalton Trans 2024; 53:5979-5984. [PMID: 38465377 DOI: 10.1039/d4dt00143e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Four new non-planar and non-aromatic porphyrin organopalladium complexes were synthesized. Conformational structures and optical and electronic properties of the obtained organopalladium complexes containing meso-substituted phenyl, p-tert-butylphenyl, or pentafluorophenyl groups were fully investigated. These complexes showed potent capacity for singlet oxygen (1O2) generation under blue-light irradiation, and the 1O2 quantum yields were in the range of 41%-56%, which were comparable to that of Ru(bpy)3Cl2 (57%), and such potency made these organopalladium complexes potential 1O2 photo sensitizers for photodynamic therapy.
Collapse
Affiliation(s)
- Xiaojuan Lv
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Yuting Dong
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Jinrong Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Tao Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Feng Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
10
|
Han F, Abbas Abedi SA, He S, Zhang H, Long S, Zhou X, Chanmungkalakul S, Ma H, Sun W, Liu X, Du J, Fan J, Peng X. Aryl-Modified Pentamethyl Cyanine Dyes at the C2' Position: A Tunable Platform for Activatable Photosensitizers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305761. [PMID: 38063803 PMCID: PMC10870032 DOI: 10.1002/advs.202305761] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/03/2023] [Indexed: 12/24/2023]
Abstract
Pentamethyl cyanine dyes are promising fluorophores for fluorescence sensing and imaging. However, advanced biomedical applications require enhanced control of their excited-state properties. Herein, a synthetic approach for attaching aryl substituents at the C2' position of the thio-pentamethine cyanine (TCy5) dye structure is reported for the first time. C2'-aryl substitution enables the regulation of both the twisted intramolecular charge transfer (TICT) and photoinduced electron transfer (PET) mechanisms to be regulated in the excited state. Modulation of these mechanisms allows the design of a nitroreductase-activatable TCy5 fluorophore for hypoxic tumor photodynamic therapy and fluorescence imaging. These C2'-aryl TCy5 dyes provide a tunable platform for engineering cyanine dyes tailored to sophisticated biological applications, such as photodynamic therapy.
Collapse
Affiliation(s)
- Fuping Han
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart MaterialsDalian University of TechnologyDalian116024China
| | - Syed Ali Abbas Abedi
- Fluorescence Research GroupSingapore University of Technology and DesignSingapore487372Singapore
| | - Shan He
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced StudyThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongChina
| | - Han Zhang
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart MaterialsDalian University of TechnologyDalian116024China
| | - Saran Long
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart MaterialsDalian University of TechnologyDalian116024China
| | - Xiao Zhou
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart MaterialsDalian University of TechnologyDalian116024China
| | | | - He Ma
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart MaterialsDalian University of TechnologyDalian116024China
| | - Wen Sun
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart MaterialsDalian University of TechnologyDalian116024China
- Ningbo Institute of Dalian University of TechnologyDalian University of Technology26 Yucai Road, Jiangbei DistrictNingbo315016China
| | - Xiaogang Liu
- Fluorescence Research GroupSingapore University of Technology and DesignSingapore487372Singapore
| | - Jianjun Du
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart MaterialsDalian University of TechnologyDalian116024China
- Ningbo Institute of Dalian University of TechnologyDalian University of Technology26 Yucai Road, Jiangbei DistrictNingbo315016China
| | - Jiangli Fan
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart MaterialsDalian University of TechnologyDalian116024China
- Ningbo Institute of Dalian University of TechnologyDalian University of Technology26 Yucai Road, Jiangbei DistrictNingbo315016China
| | - Xiaojun Peng
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart MaterialsDalian University of TechnologyDalian116024China
| |
Collapse
|
11
|
He S, Lian H, Cao X, Liu B, Wei X. Light-Driven Photocatalytic-Photothermal Synergetic System for Portable and Sensitive Nucleic Acid Quantification. Anal Chem 2023; 95:17613-17621. [PMID: 37978913 DOI: 10.1021/acs.analchem.3c03274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Photosensitizers and photothermal agents have attracted increasing attention for in vitro diagnosis, but the combination remains challenging. Herein, a light-driven photocatalytic-photothermal synergetic system integrated microfluidic distance-based analytical device (PCPT-μDAD) for visual, portable, sensitive, and quantitative detection of targets was developed. Target DNA was recognized and initiated the hybridization chain reaction to form a double-stranded DNA/SYBR Green I (dsDNA/SG-I) complex. By applying the photosensitization of the dsDNA/SG-I complex and the photothermal effect of oxidized 3,3',5,5'-tetramethylbenzidine, the target concentration can effectively translate into a visual distance signal readout. Importantly, the light-driven PCPT-μDAD greatly improves the controllability of catalytic reactions and signal amplification efficiency. The light-driven PCPT-μDAD shows a low limit of detection (fM level), good stability, and high reproducibility for nucleic acid detection.
Collapse
Affiliation(s)
- Shan He
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Huiting Lian
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
- Key Laboratory of Molecular Designing and Green Conversions, Huaqiao University, Xiamen 361021, China
| | - Xuegong Cao
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
- Key Laboratory of Molecular Designing and Green Conversions, Huaqiao University, Xiamen 361021, China
| | - Bin Liu
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
- Key Laboratory of Molecular Designing and Green Conversions, Huaqiao University, Xiamen 361021, China
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Huaqiao University, Xiamen 361021, China
| | - Xiaofeng Wei
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
- Key Laboratory of Molecular Designing and Green Conversions, Huaqiao University, Xiamen 361021, China
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
12
|
Tang J, Chen J, Zhang Z, Ma Q, Hu X, Li P, Liu Z, Cui P, Wan C, Ke Q, Fu L, Kim J, Hamada T, Kang Y, Yamauchi Y. Spontaneous generation of singlet oxygen on microemulsion-derived manganese oxides with rich oxygen vacancies for efficient aerobic oxidation. Chem Sci 2023; 14:13402-13409. [PMID: 38033900 PMCID: PMC10685315 DOI: 10.1039/d3sc04418a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/09/2023] [Indexed: 12/02/2023] Open
Abstract
Developing innovative catalysts for efficiently activating O2 into singlet oxygen (1O2) is a cutting-edge field with the potential to revolutionize green chemical synthesis. Despite its potential, practical implementation remains a significant challenge. In this study, we design a series of nitrogen (N)-doped manganese oxides (Ny-MnO2, where y represents the molar amount of the N precursor used) nanocatalysts using compartmentalized-microemulsion crystallization followed by post-calcination. These nanocatalysts demonstrate the remarkable ability to directly produce 1O2 at room temperature without the external fields. By strategically incorporating defect engineering and interstitial N, the concentration of surface oxygen atoms (Os) in the vicinity of oxygen vacancy (Ov) reaches 51.1% for the N55-MnO2 nanocatalyst. This feature allows the nanocatalyst to expose a substantial number of Ov and interstitial N sites on the surface of N55-MnO2, facilitating effective chemisorption and activation of O2. Verified through electron paramagnetic resonance spectroscopy and reactive oxygen species trapping experiments, the spontaneous generation of 1O2, even in the absence of light, underscores its crucial role in aerobic oxidation. Density functional theory calculations reveal that an increased Ov content and N doping significantly reduce the adsorption energy, thereby promoting chemisorption and excitation of O2. Consequently, the optimized N55-MnO2 nanocatalyst enables room-temperature aerobic oxidation of alcohols with a yield surpassing 99%, representing a 6.7-fold activity enhancement compared to ε-MnO2 without N-doping. Furthermore, N55-MnO2 demonstrates exceptional recyclability for the aerobic oxidative conversion of benzyl alcohol over ten cycles. This study introduces an approach to spontaneously activate O2 for the green synthesis of fine chemicals.
Collapse
Affiliation(s)
- Jun Tang
- College of Chemistry and Chemical Engineering, Anhui University of Technology Maanshan 243002 Anhui P. R. China
- School of Chemistry and Chemical Engineering, Shanxi University Taiyuan 030006 P. R. China
| | - Junbao Chen
- College of Chemistry and Chemical Engineering, Anhui University of Technology Maanshan 243002 Anhui P. R. China
| | - Zhanyu Zhang
- College of Chemistry and Chemical Engineering, Anhui University of Technology Maanshan 243002 Anhui P. R. China
| | - Qincheng Ma
- College of Chemistry and Chemical Engineering, Anhui University of Technology Maanshan 243002 Anhui P. R. China
| | - Xiaolong Hu
- College of Chemistry and Chemical Engineering, Anhui University of Technology Maanshan 243002 Anhui P. R. China
| | - Peng Li
- College of Chemistry and Chemical Engineering, Anhui University of Technology Maanshan 243002 Anhui P. R. China
| | - Zhiqiang Liu
- College of Chemistry and Chemical Engineering, Anhui University of Technology Maanshan 243002 Anhui P. R. China
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, The Chinese Academy of Sciences Nanjing 210008 P. R. China
| | - Chao Wan
- College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310058 P. R. China
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Qingping Ke
- College of Chemistry and Chemical Engineering, Anhui University of Technology Maanshan 243002 Anhui P. R. China
| | - Lei Fu
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Jeonghun Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 South Korea
| | - Takashi Hamada
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Yunqing Kang
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Yusuke Yamauchi
- Department of Chemical and Biomolecular Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 South Korea
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland 4072 Australia
| |
Collapse
|
13
|
Liu H, Chen Y, Mo L, Long F, Wang Y, Guo Z, Chen H, Hu C, Liu Z. "Afterglow" Photodynamic Therapy Based on Carbon Dots Embedded Silica Nanoparticles for Nondestructive Teeth Whitening. ACS NANO 2023; 17:21195-21205. [PMID: 37862085 DOI: 10.1021/acsnano.3c05116] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Teeth staining is a common dental health challenge in many parts of the world. Traditional teeth whitening techniques often lead to enamel damage and soft tissue toxicity due to the use of bioincompatible whitening reagents and continuous strong light irradiation. Herein, an "afterglow" photodynamic therapy (aPDT) for teeth whitening is proposed, which is realized by energy transition pathways of intersystem crossing. The covalent and hydrogen bonds formed by carbon dots embedded in silica nanoparticles (CDs@SiO2) facilitate the passage of energy through intersystem crossing (ISC), thereby extending the half-life of reactive oxygen species (ROS). The degradation efficiency of aPDT on dyes was higher than 95% in all cases. It can thoroughly whiten teeth by eliminating stains deep in the enamel without damaging the enamel structure and causing any tissue toxicity. This study illustrates the superiority of aPDT for dental whitening and the approach to exploring carbon-dots-based nanostructures in the treatment of oral diseases.
Collapse
Affiliation(s)
- Hao Liu
- MOE Key Laboratory of Laser Life Science and Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yikai Chen
- MOE Key Laboratory of Laser Life Science and Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- College of Materials and Energy, South China Agricultural University Guangzhou 510642, China
| | - Luoqi Mo
- MOE Key Laboratory of Laser Life Science and Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- College of Materials and Energy, South China Agricultural University Guangzhou 510642, China
| | - Fangdong Long
- MOE Key Laboratory of Laser Life Science and Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yixiao Wang
- MOE Key Laboratory of Laser Life Science and Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Zhouyi Guo
- MOE Key Laboratory of Laser Life Science and Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Haolin Chen
- Department of Anesthesiology, General Hospital of Southern Theater Command of People's Liberation Army, Guangzhou 510010, China
| | - Chaofan Hu
- College of Materials and Energy, South China Agricultural University Guangzhou 510642, China
| | - Zhiming Liu
- MOE Key Laboratory of Laser Life Science and Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
14
|
Zhao X, He S, Wang J, Ding J, Zong S, Li G, Sun W, Du J, Fan J, Peng X. Near-Infrared Self-Assembled Hydroxyl Radical Generator Based on Photoinduced Cascade Electron Transfer for Hypoxic Tumor Phototherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305163. [PMID: 37545041 DOI: 10.1002/adma.202305163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/22/2023] [Indexed: 08/08/2023]
Abstract
The hydroxyl radical (•OH) is an extremely potent reactive oxygen species that plays a crucial role in photooxidations within the realm of hypoxic tumor therapy. However, the current methods for •OH photogeneration typically rely on inorganic materials that require UV/vis light excitation. Consequently, photogenerators based on organic molecules, especially those utilizing near-infrared (NIR) light excitation, are rare. In this study, the concept of photoinduced cascade charge transfer (PICET), which utilizes NIR heavy-atom-free photosensitizers (ANOR-Cy5) to generate •OH is introduced. The ANOR-Cy5 photosensitizer, with its flexible hydrophobic structure, enables the formation of nanoparticles in aqueous solutions through molecular assembly. PICET involves a symmetry-breaking charge separation-induced localized charge-separated state, transitioning to a delocalized charge-separated state, which governs the efficiency of •OH generation. Thanks to the oxygen-independent nature of •OH generation and its robust oxidative properties, the ANOR-Cy5-based photosensitizer demonstrates highly effective photoinduced anti-cancer effects, even under severely hypoxic conditions. This discovery emphasizes the potential for achieving •OH photogeneration using a single organic molecule through the engineering of molecular self-assembly, thereby opening up new possibilities for phototherapy and beyond.
Collapse
Affiliation(s)
- Xueze Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Shan He
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Junfeng Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Junying Ding
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Shenglin Zong
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Guohui Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
15
|
Zhou X, Shi C, Long S, Yao Q, Ma H, Chen K, Du J, Sun W, Fan J, Liu B, Wang L, Chen X, Sui L, Yuan K, Peng X. Highly Efficient Photosensitizers with Molecular Vibrational Torsion for Cancer Photodynamic Therapy. ACS CENTRAL SCIENCE 2023; 9:1679-1691. [PMID: 37637741 PMCID: PMC10451034 DOI: 10.1021/acscentsci.3c00611] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Indexed: 08/29/2023]
Abstract
The development of highly effective photosensitizers (PSs) for photodynamic therapy remains a great challenge at present. Most PSs rely on the heavy-atom effect or the spin-orbit charge-transfer intersystem crossing (SOCT-ISC) effect to promote ISC, which brings about additional cytotoxicity, and the latter is susceptible to the interference of solvent environment. Herein, an immanent universal property named photoinduced molecular vibrational torsion (PVT)-enhanced spin-orbit coupling (PVT-SOC) in PSs has been first revealed. PVT is verified to be a widespread intrinsic property of quinoid cyanine (QCy) dyes that occurs on an extremely short time scale (10-10 s) and can be captured by transient spectra. The PVT property can provide reinforced SOC as the occurrence of ISC predicted by the El Sayed rules (1ππ*-3nπ*), which ensures efficient photosensitization ability for QCy dyes. Hence, QTCy7-Ac exhibited the highest singlet oxygen yield (13-fold higher than that of TCy7) and lossless fluorescence quantum yield (ΦF) under near-infrared (NIR) irradiation. The preeminent photochemical properties accompanied by high biosecurity enable it to effectively perform photoablation in solid tumors. The revelation of this property supplies a new route for constructing high-performance PSs for achieving enhanced cancer phototherapy.
Collapse
Affiliation(s)
- Xiao Zhou
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Chao Shi
- College
of Chemistry and Chemical Engineering, Yantai
University, Yantai 264005, P. R. China
| | - Saran Long
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Qichao Yao
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - He Ma
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Kele Chen
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Jianjun Du
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Wen Sun
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Jiangli Fan
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Bin Liu
- State
Key Laboratory of Fine Chemicals, College of Materials Science and
Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Lei Wang
- State
Key Laboratory of Fine Chemicals, College of Materials Science and
Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xiaoqiang Chen
- State
Key Laboratory of Fine Chemicals, College of Materials Science and
Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Laizhi Sui
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Kaijun Yuan
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xiaojun Peng
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
- State
Key Laboratory of Fine Chemicals, College of Materials Science and
Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
16
|
Lu B, Quan H, Zhang Z, Li T, Wang J, Ding Y, Wang Y, Zhan X, Yao Y. End Group Nonplanarization Enhances Phototherapy Efficacy of A-D-A Fused-Ring Photosensitizer for Tumor Phototherapy. NANO LETTERS 2023; 23:2831-2838. [PMID: 36897125 DOI: 10.1021/acs.nanolett.3c00119] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Enhancing the phototherapy efficacy of organic photosensitizers through molecular design is a fascinating but challenging task. Herein, we propose a simple design strategy to first realize the generation of superoxide anion radical (O2•-) by A-D-A fused-ring photosensitizers. Through replacing one cyano group of traditional end group with an ester group, we designed a novel nonplanar end group (A unit) to synthesize a novel A-D-A photosensitizer F8CA. In a comparison with its counterpart F8CN with the traditional end group, F8CA displays more loose packing and larger spin-orbit coupling constants. The F8CA nanoparticles showed higher photodynamic activities with the generation capability of singlet oxygen (1O2), hydroxyl radical (•OH), and O2•-, while F8CN nanoparticles could only generate 1O2 and •OH. In addition, F8CA nanoparticles still remain high photothermal conversion efficiency (61%). As a result, F8CA nanoparticles perform well in hypoxia-tolerant tumor phototherapy. This study brings an effective design thought for A-D-A photosensitizers.
Collapse
Affiliation(s)
- Bing Lu
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Hui Quan
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Zhecheng Zhang
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Tengfei Li
- School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, P. R. China
| | - Jin Wang
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Yue Ding
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Yang Wang
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Xiaowei Zhan
- School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, P. R. China
| | - Yong Yao
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| |
Collapse
|
17
|
Li R, Ren J, Zhang D, Lv M, Wang Z, Wang H, Zhang S, Du J, Jiang XD, Wang G. Attachment of −tBu groups to aza-BODIPY core at 3,5-sites with ultra-large Stokes shift to enhance photothermal therapy through apoptosis mechanism. Mater Today Bio 2022; 16:100446. [PMID: 36199559 PMCID: PMC9527945 DOI: 10.1016/j.mtbio.2022.100446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022]
Abstract
By the introduction of the −tBu groups into aza-BODIPY core, di-tert-butyl-substituted aza-BODIPYs at 3,5-sites (tBuazaBDPs) were prepared for the first time. Based on the X-ray analysis of CN-tBuazaBDP, this molecular structure is twisted. Near-infrared dye SMe-tBuazaBDP has the ultra-large Stokes shift (152 nm) in aza-BODIPY system, combining with the twisted intramolecular charge transfer and the free rotation of the −tBu groups at 3,5-sites. Although the barrier-free rotors of the distal −tBu groups in SMe-tBuazaBDP result in low fluorescence quantum yield, the photothermal conversion efficiency is markedly enhanced. SMe-tBuazaBDP nanoparticles with low power laser irradiation were proven to block cancer cell cycle, inhibit cancer cell proliferation, and induce cancer cell apoptosis in photothermal therapy (PTT). The strategy of “direct attachment of −tBu groups to aza-BODIPY core” gives a new design platform for a photothermal therapy agent. Di-tert-butyl-substituted aza-BODIPYs at 3,5-sites (tBuazaBDPs) were prepared for the first time. Near-infrared dye SMe-tBuazaBDP has the ultra-large Stokes shift (152 nm) in aza-BODIPY system. SMe-tBuazaBDP nanoparticles can photothermally induce apoptosis as a potential photothermal therapy agent.
Collapse
|
18
|
Li Y, Ma T, Jiang H, Li W, Tian D, Zhu J, Li Z. Anionic Cyanine J‐Type Aggregate Nanoparticles with Enhanced Photosensitization for Mitochondria‐Targeting Tumor Phototherapy. Angew Chem Int Ed Engl 2022; 61:e202203093. [DOI: 10.1002/anie.202203093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Indexed: 12/18/2022]
Affiliation(s)
- Yibin Li
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Key Laboratory for Material Chemistry of Energy Conversion and Storage Ministry of Education School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Teng Ma
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Key Laboratory for Material Chemistry of Energy Conversion and Storage Ministry of Education School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Hao Jiang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Key Laboratory for Material Chemistry of Energy Conversion and Storage Ministry of Education School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Wei Li
- Hubei Key Laboratory of Biomass Fibers and Eco - dyeing & Finishing Department of Chemistry and Chemical Engineering Wuhan Textile University Wuhan 430073 China
| | - Di Tian
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Key Laboratory for Material Chemistry of Energy Conversion and Storage Ministry of Education School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
- Hubei Key Laboratory of Biomass Fibers and Eco - dyeing & Finishing Department of Chemistry and Chemical Engineering Wuhan Textile University Wuhan 430073 China
| | - Jintao Zhu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Key Laboratory for Material Chemistry of Energy Conversion and Storage Ministry of Education School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Zhong'an Li
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Key Laboratory for Material Chemistry of Energy Conversion and Storage Ministry of Education School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|
19
|
Savani S, Onbasli K, Gunduz H, Aydındogan E, Erkısa M, Muti A, Khan M, Sennaroglu A, Ulukaya E, Yagci Acar H, Kolemen S. Development of a cysteine responsive chlorinated hemicyanine for image-guided dual phototherapy. Bioorg Chem 2022; 122:105725. [DOI: 10.1016/j.bioorg.2022.105725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/23/2022] [Accepted: 03/06/2022] [Indexed: 12/11/2022]
|
20
|
Li Y, Ma T, Jiang H, Li W, Tian D, Zhu J, Li Z. Anionic Cyanine J‐type Aggregate Nanoparticles with Enhanced Photosensitization for Mitochondria‐targeting Tumor Phototherapy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yibin Li
- Huazhong University of Science and Technology - Main Campus: Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Teng Ma
- Huazhong University of Science and Technology - Main Campus: Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Hao Jiang
- Huazhong University of Science and Technology - Main Campus: Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Wei Li
- Wuhan Textile University Department of Chemistry and Chemical Engineering CHINA
| | - Di Tian
- Huazhong University of Science and Technology - Main Campus: Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Jintao Zhu
- Huazhong University of Science and Technology - Main Campus: Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Zhong'an Li
- Huazhong University of Science and Technology - Main Campus: Huazhong University of Science and Technology School of Chemistry and Chemical Engineering 1037 Luoyu Road 430074 Wuhan CHINA
| |
Collapse
|
21
|
Guo T, Chen X, Qu W, Yang B, Tian R, Geng Z, Wang Z. Red and Near-Infrared Fluorescent Probe for Distinguishing Cysteine and Homocysteine through Single-Wavelength Excitation with Distinctly Dual Emissions. Anal Chem 2022; 94:5006-5013. [PMID: 35294170 DOI: 10.1021/acs.analchem.1c04895] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Small-molecule biothiols, including cysteine (Cys), homocysteine (Hcy), and glutathione (GSH), participate in various pathological and physiological processes. It is still a challenge to simultaneously distinguish Cys and Hcy because of their similar structures and reactivities, as well as the interference from the high intramolecular concentration of GSH. Herein, a novel fluorescent probe, CySI, based on cyanine and thioester was developed to differentiate Cys and Hcy through a single-wavelength excitation and two distinctly separated emission channels. The probe exhibited a turn-on fluorescence response to Cys at both 625 nm (the red channel) and 740 nm (the near-infrared channel) but only showed fluorescence turn-on to Hcy at 740 nm (the near-infrared channel) and no fluorescent response to GSH. With the aid of built-in self-calibration of single excitation and dual emissions, simultaneous discriminative determinations of Cys and Hcy were realized through red and near-infrared channels. CySI exhibited excellent selectivity toward Cys and Hcy with a fast response. This probe was further exploited to visualize exogenous Cys and Hcy in cells through dual emission channels under one excitation. Moreover, it could efficiently target mitochondria and was applied to monitor the endogenous Cys fluctuations independently in mitochondria through the red emission channel.
Collapse
Affiliation(s)
- Taiyu Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Xinyue Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Wangbo Qu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Bin Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Ruowei Tian
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Zhirong Geng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Zhilin Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
22
|
Ma H, Lu Y, Huang Z, Long S, Cao J, Zhang Z, Zhou X, Shi C, Sun W, Du J, Fan J, Peng X. ER-Targeting Cyanine Dye as an NIR Photoinducer to Efficiently Trigger Photoimmunogenic Cancer Cell Death. J Am Chem Soc 2022; 144:3477-3486. [DOI: 10.1021/jacs.1c11886] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- He Ma
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Yang Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Zhibin Huang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals and Shenzhen Research Institute, Dalian University of Technology, Dalian 116024, China
| | - Jianfang Cao
- School of Chemical Engineering, Dalian University of Technology, Panjin Campus, Panjin 124221, China
| | - Zhen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Xiao Zhou
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Chao Shi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals and Shenzhen Research Institute, Dalian University of Technology, Dalian 116024, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals and Shenzhen Research Institute, Dalian University of Technology, Dalian 116024, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals and Shenzhen Research Institute, Dalian University of Technology, Dalian 116024, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals and Shenzhen Research Institute, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
23
|
Ma W, Mao J, He CT, Shao L, Liu J, Wang M, Yu P, Mao L. Highly selective generation of singlet oxygen from dioxygen with atomically dispersed catalysts. Chem Sci 2022; 13:5606-5615. [PMID: 35694341 PMCID: PMC9116287 DOI: 10.1039/d2sc01110g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/18/2022] [Indexed: 11/21/2022] Open
Abstract
Singlet oxygen (1O2) as an excited electronic state of O2 plays a significant role in the ubiquitous oxidative processes from enzymatic oxidative metabolism to industrial catalytic oxidation. Generally, 1O2 can...
Collapse
Affiliation(s)
- Wenjie Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Chun-Ting He
- MOE Key Laboratory of Functional Small Organic Molecule, College of Chemistry and Chemical Engineering, Jiangxi Normal University Nanchang 330022 China
| | - Leihou Shao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS) Beijing 100190 China
| | - Ji Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS) Beijing 100190 China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS) Beijing 100190 China
- College of Chemistry, Beijing Normal University Xinjiekouwai Street 19 Beijing 100875 China
| |
Collapse
|
24
|
Lu Y, Xu F, Wang Y, Shi C, Sha Y, He G, Yao Q, Shao K, Sun W, Du J, Fan J, Peng X. Cancer immunogenic cell death via photo-pyroptosis with light-sensitive Indoleamine 2,3-dioxygenase inhibitor conjugate. Biomaterials 2021; 278:121167. [PMID: 34624752 DOI: 10.1016/j.biomaterials.2021.121167] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 01/21/2023]
Abstract
Immune checkpoint blockade (ICB) therapy currently considered as to be effective way to cure cancer in clinic. However, the insufficient tumor immunogenicity and the immunosuppressive tumor microenvironment always result in diminished efficacy of immunotherapy. Herein, we report the synthesis of an organic photo-immune activator NBS-1MT, the combination of photosensitizer and Indoleamine 2,3-dioxygenase (IDO) inhibitor effectively stimulates lysosomes oxidative stress the releases inflammatory cytokines. This process triggers pyroptosis for the considerable immunogenic cell death (ICD) while reversing suppressive tumor microenvironment. The photo-immune drug shows outstanding potential to activate caspase-1and then remove gasdermin-D (GSDMD), which could stimulate pyroptosis and also inhibit the tumor growth successfully in both primary and distant tumor. Furthermore, pyroptosis activated by photodynamic therapy (PDT) promotes the immune related factors release, and enhance the intratumoral infiltration of cytotoxic T lymphocytes (CTLs) with the induction of ICD of tumor cells and the cascaded synergize with IDO inhibitor, so the general antitumor immune response could be strengthened effectively. Our research confirms that the use of NBS-1MT is a promising strategy to boost the immune response and eventually to inhibit tumor growth.
Collapse
Affiliation(s)
- Yang Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China
| | - Feng Xu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China
| | - Yang Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China
| | - Chao Shi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China
| | - Yuzhuo Sha
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China
| | - Guangli He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China
| | - Qichao Yao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China
| | - Kun Shao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China; State Key Laboratory of Fine Chemicals, Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen, 518057, PR China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China; State Key Laboratory of Fine Chemicals, Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen, 518057, PR China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China; State Key Laboratory of Fine Chemicals, Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen, 518057, PR China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China; State Key Laboratory of Fine Chemicals, Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen, 518057, PR China.
| |
Collapse
|