1
|
Zhang L, Zheng L, Song Y, Huang J, Ning H, Wang L, Ma J, Jie K. Molecular-Squeeze Triggers Guest Desorption from Sponge-Like Macrocycle Crystals. Angew Chem Int Ed Engl 2024:e202420048. [PMID: 39625827 DOI: 10.1002/anie.202420048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Indexed: 12/14/2024]
Abstract
Desorption in conventional porous sorbents often employ external forces including inert gas blowing, heating, vacuum treatment to trigger guest release. We here report an unprecedented molecular-squeeze triggered guest release behavior from sponge-like macrocycle crystals. The crystals function as typical sponge to include guest molecules within their microscopic voids that are adaptively formed, thus acting as adsorbents for toluene/pyridine separations. Intriguingly, vaporized ethyl acetate (EA) molecules trigger the guest release from the crystals without entering the pores or voids of the crystals to replace the guests. Instead, they work as external forces applied directly onto the crystals themselves, ''squeezing" the materials to close the voids through supramolecular interactions between EA and macrocycles on the crystal surface and release the guest molecules. Various experimental techniques as well as molecular dynamics simulations reveal the mechanism of the molecular-squeeze induced guest release procedure. The EA-regenerated crystals can be recycled multiple times without the loss of separation performance. Compared with conventional guest release procedure, this method is manipulated in a mild condition, showing the potential in saving cost and energy.
Collapse
Affiliation(s)
- Linnan Zhang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Lifeng Zheng
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yingying Song
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jingwei Huang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Hailong Ning
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Leyong Wang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jing Ma
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Kecheng Jie
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
2
|
Du CB, Long YJ, Han XN, Han Y, Chen CF. Recent advances in novel chiral macrocyclic arenes. Chem Commun (Camb) 2024; 60:13492-13506. [PMID: 39466106 DOI: 10.1039/d4cc05084c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Chiral macrocyclic arenes possess confined three-dimensional asymmetric cavities, electron-rich structures, chiral luminescence properties and excellent enantioselective recognition properties and have become a frontier and hotspot of macrocyclic chemistry and supramolecular chemistry. In recent years, there has been growing interest in the development of novel chiral macrocyclic arenes, which have found applications in various research areas. In this review, the construction, properties and functional applications of novel chiral macrocyclic arenes in enantioselective recognition, chiral sorting and construction of chiral luminescent materials according to their chiral types, including central, axial, planar, and inherent chiralities, are summarized. It is expected that this review will be helpful for research on supramolecular chemistry and for promoting the development of synthetic chemistry, materials chemistry and biochemistry.
Collapse
Affiliation(s)
- Cheng-Bin Du
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Jie Long
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Ni Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Ren S, Qiao GY, Wu JR. Supramolecular-macrocycle-based functional organic cocrystals. Chem Soc Rev 2024; 53:10312-10334. [PMID: 39240538 DOI: 10.1039/d4cs00654b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Supramolecular macrocycles, renowned for their remarkable capabilities in molecular recognition and complexation, have emerged as pivotal elements driving advancements across various innovative research fields. Cocrystal materials, an important branch within the realm of crystalline organic materials, have garnered considerable attention owing to their simple preparation methods and diverse potential applications, particularly in optics, electronics, chemical sensing and photothermal conversion. In recent years, macrocyclic entitles have been successfully brought into this field, providing an essential and complementary channel to create novel functional materials, especially those with multiple functionalities and smart stimuli-responsiveness. In this Review, we present an overview of the research efforts on functional cocrystals constructed with macrocycles, covering their design principles, preparation strategies, assembly modes, and diverse functions and applications. Finally, the remaining challenges and perspectives are outlined. We anticipate that this review will serve as a valuable and timely reference for researchers interested in supramolecular crystalline materials and beyond, catalyzing the emergence of more original and innovative studies in related fields.
Collapse
Affiliation(s)
- Susu Ren
- Department of Materials Science, School of Materials Science and Engineering, Jilin University, Changchun 130012, P. R. China.
| | - Guan-Yu Qiao
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun 130041, P. R. China
| | - Jia-Rui Wu
- Department of Materials Science, School of Materials Science and Engineering, Jilin University, Changchun 130012, P. R. China.
| |
Collapse
|
4
|
Sun G, Zhang X, Zheng Z, Zhang ZY, Dong M, Sessler JL, Li C. Chiral Macrocycles for Enantioselective Recognition. J Am Chem Soc 2024; 146:26233-26242. [PMID: 39269922 DOI: 10.1021/jacs.4c07924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The efficient synthesis of chiral macrocycles with highly enantioselective recognition remains a challenge. We have addressed this issue by synthesizing a pair of chiral macrocycles, namely, R/S-BINOL[2], achieving total isolated yields of up to 62% through a two-step reaction sequence. These macrocycles are readily purified by column chromatography over silica gel without the need for chiral separation, thus streamlining the overall synthesis. R/S-BINOL[2] demonstrated enantioselective recognition toward chiral ammonium salts, with enantioselectivity (KS/KR) values reaching up to 13.2, although less favorable separations were seen for other substrates. R/S-BINOL[2] also displays blue circularly polarized luminescence with a |glum| value of up to 2.2 × 10-3. The R/S-BINOL[2] macrocycles of this study are attractive as chiral hosts in that they both display enantioselective guest recognition and benefit from a concise, high-yielding synthesis. As such, they may have a role to play in chiral separations.
Collapse
Affiliation(s)
- Guang Sun
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Xue Zhang
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Zhe Zheng
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Zhi-Yuan Zhang
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Ming Dong
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chunju Li
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| |
Collapse
|
5
|
Fang W, Zhang J, Guo M, Zhao Y, Sue ACH. Triphenylamine[3]arenes: Streamlining Synthesis of a Versatile Macrocyclic Platform for Supramolecular Architectures and Functionalities. Angew Chem Int Ed Engl 2024; 63:e202409120. [PMID: 38770884 DOI: 10.1002/anie.202409120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 05/22/2024]
Abstract
Triphenylamine[3]arenes (TPA[3]s), featuring [16]paracyclophane backbone with alternating carbon and nitrogen bridging atoms, were synthesized through a BF3 ⋅ Et2O-catalyzed cyclization reaction using triphenylamine derivatized monomers and paraformaldehyde. This molecular design yielded a series of TPA[3] macrocycles with high efficiency, with their facile derivatizations also successfully demonstrated. On account of the strong electron-donating properties of the TPA moieties, these TPA[3]s exhibit remarkable delayed fluorescence, and possess a significant affinity for iodine. Furthermore, their inherent three-fold symmetry rendered TPA[3]s as novel building blocks for the construction of extended frameworks and molecular cages. This advancement expands the versatility of discrete macrocycles into complex architectures, enhancing their applicability across a broad spectrum of applications.
Collapse
Affiliation(s)
- Wangjian Fang
- School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Siming District, Xiamen, Fujian Province, 361005, P. R. China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jianyu Zhang
- School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Minjie Guo
- School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Andrew C-H Sue
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Siming District, Xiamen, Fujian Province, 361005, P. R. China
| |
Collapse
|
6
|
Liu R, Li M, Liu Z, Hua B. Separation of cyclohexanol from cyclohexanol/cyclohexene mixtures by crystals of pillar[6]arene containing three benzoquinone units. Chem Commun (Camb) 2024; 60:7626-7629. [PMID: 38957992 DOI: 10.1039/d4cc02407a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Here, we develop a new absorbent for efficient separation of cyclohexanol (CHA-ol) and cyclohexene (CHA-ene) by using crystals of pillar[6]arene with three benzoquinone units (P3QA). P3QA crystals are found to show remarkable selectivity for CHA-ol in 50 : 50 (v/v) CHA-ol : CHA-ene mixtures with a purity of 95.2%, along with vapochromic behavior.
Collapse
Affiliation(s)
- Rui Liu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Ming Li
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Zhongwen Liu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Bin Hua
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| |
Collapse
|
7
|
Yu Y, Hu Y, Ning C, Shi W, Yang A, Zhao Y, Cao ZY, Xu Y, Du P. BINOL-Based Chiral Macrocycles and Cages. Angew Chem Int Ed Engl 2024; 63:e202407034. [PMID: 38708741 DOI: 10.1002/anie.202407034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/05/2024] [Accepted: 05/05/2024] [Indexed: 05/07/2024]
Abstract
Chirality, a fundamental principle in chemistry, biology, and medicine, is prevalent in nature and in organisms. Chiral molecules, such as DNA, RNA, and proteins, are crucial in biomolecular synthesis, as well as in the development of functional materials. Among these, 1,1'-binaphthyl-2,2'-diol (BINOL) stands out for its stable chiral configuration, versatile functionality, and commercial availability. BINOL is widely employed in asymmetric catalysis and chiral materials. This review mainly focuses on recent research over the past five years concerning the use of BINOL derivatives for constructing chiral macrocycles and cages. Their contributions to chiral luminescence, enantiomeric separation, transmembrane transport, and asymmetric catalysis were examined.
Collapse
Affiliation(s)
- Yabing Yu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan Province, 475004, China
| | - Yaning Hu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan Province, 475004, China
| | - Chengbing Ning
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan Province, 475004, China
| | - Wudi Shi
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan Province, 475004, China
| | - Ao Yang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan Province, 475004, China
| | - Yibo Zhao
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan Province, 475004, China
| | - Zhong-Yan Cao
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan Province, 475004, China
| | - Youzhi Xu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan Province, 475004, China
| | - Pingwu Du
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan Province, 475004, China
- Hefei National Research Center for Physical Sciences at the Microscale, Anhui Laboratory of Advanced Photon Science and Technology, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, China
| |
Collapse
|
8
|
Li B, Wang Y, Wang Y, Liu Y, Wang L, Zhang ZY, Li C. Vapochromic separation of toluene and pyridine azeotropes using adaptive macrocycle co-crystals. Chem Commun (Camb) 2024; 60:6889-6892. [PMID: 38874540 DOI: 10.1039/d4cc01246a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The separation of toluene (Tol) and pyridine (Py) azeotropes is significant in the chemical industry. Herein, we present a new method for the energy-efficient separation of Tol and Py using pillar[5]arene-based adaptive macrocycle co-crystals (MCCs) that can selectively separate Py from a Py/Tol equimolar mixture with 99.2% purity, accompanied by vapochromic behavior from white to yellow.
Collapse
Affiliation(s)
- Bin Li
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Yun Wang
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Yuan Wang
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Yue Liu
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Lu Wang
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Zhi-Yuan Zhang
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Chunju Li
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| |
Collapse
|
9
|
Ruan C, Li Z, Lin W, Wang R, Xie W, Li H, Lu Y, Wang R, Li S, Wang L. Pillarurilarenes: Glycoluril-Expanded Pillararenes. Org Lett 2024; 26:4122-4126. [PMID: 38695413 DOI: 10.1021/acs.orglett.4c01243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Glycoluril-expanded pillararenes composed of glycoluril and dialkoxybenzene units, namely, pillarurilarenes (PURA), were synthesized through a fragment coupling macrocyclization strategy. Partial replacement of dialkoxybenzene with glycoluril endows PURA with polarized equatorial methine protons for derivatization or CH-anion binding. Crystal structures of pillar[2]uril[4]arene and pillar[1]uril[4]arene containing two glycoluril units and one glycoluril unit, respectively, indicated the inward orientation of the glycoluril unit, as also suggested by 1H nuclear magnetic resonance and density functional theory calculation. This work lays a good foundation for expanding pillararenes using non-aromatic rings.
Collapse
Affiliation(s)
- Chao Ruan
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Zhijin Li
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenhao Lin
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ranran Wang
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wang Xie
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Heng Li
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yunfeng Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Shengke Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
10
|
Divakar S, Naik NS, Balakrishna RG, Padaki M. Liquid- liquid (Cyclohexanone: Cyclohexanol) separation using augmented tight nanofiltration membrane: A sustainable approach. CHEMOSPHERE 2024; 355:141820. [PMID: 38561158 DOI: 10.1016/j.chemosphere.2024.141820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/28/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
Organic solvent nanofiltration (OSN) is an incipient technology in the field of organic liquid-liquid separation. The incomplete separations and complexity involved in these, forces many organic liquids to be released as effluents and the adverse effects of these on environment is enormous and irreparable. The work prominences on the complete separation of industrially significant cyclohexanone: cyclohexanol (keto-alcohol oil) and heptane: toluene mixtures. The separations of these above-mentioned organic liquid mixtures were carried out using the fabricated Lewis acid modified graphitic carbon nitride (Cu2O@g-C3N4) incorporated polyvinylidene difluoride (PVDF) composite membranes. These fabricated membranes showed a separation factor of 18.16 and flux of 1.62 Lm-2h-1 for cyclohexanone: cyclohexanol mixture and separation of heptane and toluene mixture (with heptane flux of 1.52 Lm-2h-1) showed a separation factor of 9.9. The selectivity and productivity are based on the polarity and size of the organic liquids. The role of Cu2O@g-C3N4 is influencing the pore size distribution, increased divergence from solubility parameters, polarity, solvent uptake and porosity of the composite membranes. The developed composite membranes are thus envisioned to be apt for a wide range of liquid-liquid separations due to its implicit nature.
Collapse
Affiliation(s)
- Swathi Divakar
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, India, 562112
| | - Nagaraj S Naik
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, India, 562112
| | - R Geetha Balakrishna
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, India, 562112.
| | - Mahesh Padaki
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, India, 562112.
| |
Collapse
|
11
|
Chen J, Zhang W, Yang W, Xi F, He H, Liang M, Dong Q, Hou J, Wang M, Yu G, Zhou J. Separation of benzene and toluene associated with vapochromic behaviors by hybrid[4]arene-based co-crystals. Nat Commun 2024; 15:1260. [PMID: 38341431 DOI: 10.1038/s41467-024-45592-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
The combination of macrocyclic chemistry with co-crystal engineering has promoted the development of materials with vapochromic behaviors in supramolecular science. Herein, we develop a macrocycle co-crystal based on hybrid[4]arene and 1,2,4,5-tetracyanobenzene that is able to construct vapochromic materials. After the capture of benzene and toluene vapors, activated hybrid[4]arene-based co-crystal forms new structures, accompanied by color changes from brown to yellow. However, when hybrid[4]arene-based co-crystal captures cyclohexane and pyridine, neither structures nor colors change. Interestingly, hybrid[4]arene-based co-crystal can separate benzene from a benzene/cyclohexane equal-volume mixture and allow toluene to be removed from a toluene/ pyridine equal-volume mixture with purities reaching 100%. In addition, the process of adsorptive separation can be visually monitored. The selectivity of benzene from a benzene/cyclohexane equal-volume mixture and toluene from a toluene/ pyridine equal-volume mixture is attributed to the different changes in the charge-transfer interaction between hybrid[4]arene and 1,2,4,5-tetracyanobenzene when hybrid[4]arene-based co-crystal captures different vapors. Moreover, hybrid[4]arene-based co-crystal can be reused without losing selectivity and performance. This work constructs a vapochromic material for hydrocarbon separation.
Collapse
Affiliation(s)
- Jingyu Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Wenjie Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Wenzhi Yang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Fengcheng Xi
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Hongyi He
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Minghao Liang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Qian Dong
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Jiawang Hou
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Mengbin Wang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, PR China.
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, PR China.
| | - Jiong Zhou
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China.
| |
Collapse
|
12
|
Yan M, Wang Y, Chen J, Zhou J. Potential of nonporous adaptive crystals for hydrocarbon separation. Chem Soc Rev 2023; 52:6075-6119. [PMID: 37539712 DOI: 10.1039/d2cs00856d] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Hydrocarbon separation is an important process in the field of petrochemical industry, which provides a variety of raw materials for industrial production and a strong support for the development of national economy. However, traditional separation processes involve huge energy consumption. Adsorptive separation based on nonporous adaptive crystal (NAC) materials is considered as an attractive green alternative to traditional energy-intensive separation technologies due to its advantages of low energy consumption, high chemical and thermal stability, excellent selective adsorption and separation performance, and outstanding recyclability. Considering the exceptional potential of NAC materials for hydrocarbon separation, this review comprehensively summarizes recent advances in various supramolecular host-based NACs. Moreover, the current challenges and future directions are illustrated in detail. It is expected that this review will provide useful and timely references for researchers in this area. Based on a large number of state-of-the-art studies, the review will definitely advance the development of NAC materials for hydrocarbon separation and stimulate more interesting studies in related fields.
Collapse
Affiliation(s)
- Miaomiao Yan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Yuhao Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Jingyu Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Jiong Zhou
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| |
Collapse
|
13
|
Li B, Wang Y, Liu L, Dong M, Li C. Separation of Cyclohexanone and Cyclohexanol by Adaptive Pillar[5]arene Cocrystals Accompanied by Vapochromic Behavior. JACS AU 2023; 3:1590-1595. [PMID: 37388695 PMCID: PMC10301796 DOI: 10.1021/jacsau.3c00131] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 07/01/2023]
Abstract
The separation of cyclohexanone (CHA-one) and cyclohexanol (CHA-ol) mixtures is of great importance in the chemical industry. Current technology exploits multiple steps of energy-intensive rectification due to their close boiling points. Herein, we report a new and energy-efficient adsorptive separation method employing binary adaptive macrocycle cocrystals (MCCs) built with π-electron-rich pillar[5]arene (P5) and an electron-deficient naphthalenediimide derivative (NDI) that can selectively separate CHA-one from an equimolar CHA-one/CHA-ol mixture with >99% purity. Intriguingly, this adsorptive separation process is accompanied by vapochromic behavior from pink to dark brown. Single-crystal and powder X-ray diffraction analyses reveal that the adsorptive selectivity and vapochromic property are derived from the CHA-one vapor inside the cocrystal lattice voids triggering solid-state structural transformations to yield charge-transfer (CT) cocrystals. Moreover, the reversible transformations make the cocrystalline materials highly recyclable.
Collapse
|
14
|
Yang YD, Chen XL, Liang J, Fang JW, Sessler JL, Gong HY. Time-Dependent Solvent-Driven Solid-State Fluorescence-based Numeric Coding. J Am Chem Soc 2023. [PMID: 37327391 DOI: 10.1021/jacs.3c03727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Controllable solid-state transformations can provide a basis for novel functional materials. Herein, we report a series of solid-state systems that can be readily transformed between amorphous, co-crystalline, and mixed crystalline states via grinding or exposure to solvent vapors. The present solid materials were constructed using an all-hydrocarbon macrocycle, cyclo[8](1,3-(4,6-dimethyl)benzene) (D4d-CDMB-8) (host), and neutral aggregation-caused quenching dyes (guests), including 9,10-dibromoanthracene (1), 1,8-naphtholactam (2), diisobutyl perylene-3,9-dicarboxylate (3), 4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene (4), 4,7-di(2-thienyl)-benzo[2,1,3]thiadiazole (5), and 4-imino-3-(pyridin-2-yl)-4H-quinolizine-1-carbonitrile (6). Seven co-crystals and six amorphous materials were obtained via host-guest complexation. Most of these materials displayed turn-on fluorescence emission (up to 20-fold enhancement relative to the corresponding solid-state guests). The interconversion between amorphous, co-crystalline states, and crystalline mixtures could be induced by exposure to solvent vapors or by subjecting to grinding. The transformations could be monitored readily by means of single-crystal and powder X-ray diffraction analyses, as well as solid-state fluorescent emission spectroscopy. The externally induced structural interconversions resulted in time-dependent fluorescence changes. This allowed sets of privileged number array codes to be generated.
Collapse
Affiliation(s)
- Yu-Dong Yang
- College of Chemistry, Beijing Normal University, No. 19, XinJieKouWai Street, HaiDian District, Beijing 100875, P. R. China
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Xu-Lang Chen
- College of Chemistry, Beijing Normal University, No. 19, XinJieKouWai Street, HaiDian District, Beijing 100875, P. R. China
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Jiaqi Liang
- College of Chemistry, Beijing Normal University, No. 19, XinJieKouWai Street, HaiDian District, Beijing 100875, P. R. China
| | - Ji-Wang Fang
- College of Chemistry, Beijing Normal University, No. 19, XinJieKouWai Street, HaiDian District, Beijing 100875, P. R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Han-Yuan Gong
- College of Chemistry, Beijing Normal University, No. 19, XinJieKouWai Street, HaiDian District, Beijing 100875, P. R. China
| |
Collapse
|
15
|
Han XN, Han Y, Chen CF. Recent advances in the synthesis and applications of macrocyclic arenes. Chem Soc Rev 2023; 52:3265-3298. [PMID: 37083011 DOI: 10.1039/d3cs00002h] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Macrocyclic arenes including calixarenes, resorcinarenes, cyclotriveratrylene, pillararenes and so on have emerged as highly attractive synthetic macrocyclic hosts due to their unique structures, facile functionalization, and broad range of applications. In recent years, there has been growing interest in the development of novel macrocyclic arenes composed of various aromatic building blocks bridged by methylene groups, which have found applications in various research areas. Consequently, the development of novel macrocyclic arenes has become a frontier and hot topic in supramolecular and macrocyclic chemistry. In this review, we feature the recent advances in the synthesis and applications of novel macrocyclic arenes that have emerged in the last decade. The general synthetic strategies employed for these macrocyclic arenes are systematically summarized, and their wide applications in molecular recognition and assemblies, molecular machines, biomedical science and functional materials are highlighted.
Collapse
Affiliation(s)
- Xiao-Ni Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Wang D, Zhao Y. Rigid-Flexible Hybrid Porous Molecular Crystals with Guest-Induced Reversible Crystallinity. Angew Chem Int Ed Engl 2023; 62:e202217903. [PMID: 36720717 DOI: 10.1002/anie.202217903] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/02/2023]
Abstract
A weak CH/O hydrogen-bonded organic framework (HOF) with both rigidity and flexibility that could easily and reversibly switch from a non-crystalline to a crystalline phase was constructed. The specific solvent molecule acts as a "key" to control the crystallinity, while the highly rigid triangle macrocycle as the building block is the "lock". The introduction and removal of the "key" could influence the local flexibility of the whole framework and lead to switchable crystallinity. Furthermore, the obtained HOF exhibits excellent separation efficiency for benzene and cyclohexane (94.4 %).
Collapse
Affiliation(s)
- Danbo Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Road, 266000, Qingdao, China
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Road, 266000, Qingdao, China
| |
Collapse
|
17
|
Zeng F, Tang LL, Yu H, Xu FP, Wang L. Hydrogen-bonding-driven self-assembly nonporous adaptive crystals for the separation of benzene from BTX and Cyclohexane. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
18
|
Selective gradient separation of aminophenol isomers by cucurbit[6]uril. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Han H, Fu R, Wang R, Tang C, He MM, Deng JY, Guo DS, Stoddart JF, Cai K. Corralarenes: A Family of Conjugated Tubular Hosts. J Am Chem Soc 2022; 144:20351-20362. [PMID: 36264544 DOI: 10.1021/jacs.2c08144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite the advances in host-guest chemistry, macrocyclic hosts with deep cavities are far from abundant among the large number of wholly synthetic hosts described in the literature. Herein, we describe the design and synthesis of two new tubular hosts, namely, corral[4]arene and corral[5]arene. The former has been isolated and characterized as two conformational diastereoisomers, one is centrosymmetric and the other asymmetric. The latter, a fivefold symmetrical and flexible host, has also been investigated in detail. It is composed of five 4,4'-dimethoxybiphenyl units bridged by ethynylene linkers at their 2,2'-positions and adopts a pentagonal conformation with a tubular-shaped cavity in the presence of guests. This structure endows corral[5]arene not only with a conjugated backbone, capable of bright fluorescent emission (quantum yield, 56%), but also a deep π-electron-rich aromatic cavity with remarkable conformational flexibility. The adaptive cavity of corral[5]arene allows it to accommodate a wide range of neutral and positively charged electron-deficient guests with different molecular sizes and shapes. Binding constants between this host and these guests in three different nonpolar organic solvents lie in the range of 103 to 107 M-1. Moreover, corral[5]arene exhibits dynamic chirality on account of the axes of chirality associated with each of the five biphenyl units and displays first-order transformation as exhibited by circular dichroism in response to the addition of chiral guests. All these stereochemical features render corral[5]arene an attractive host for a variety of supramolecular and nanotechnological applications.
Collapse
Affiliation(s)
- Han Han
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300072, China.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Rong Fu
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300072, China
| | - Ruiguo Wang
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300072, China
| | - Chun Tang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Miao-Miao He
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300072, China
| | - Jia-Ying Deng
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300072, China
| | - Dong-Sheng Guo
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300072, China
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China.,School of Chemistry, University of New South Wales, Sydney 2052, NSW, Australia
| | - Kang Cai
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300072, China
| |
Collapse
|
20
|
Li E, Zhu W, Fang S, Jie K, Huang F. Reimplementing Guest Shape Sorting of Nonporous Adaptive Crystals via Substituent‐Size‐Dependent Solid‐Vapor Postsynthetic Modification. Angew Chem Int Ed Engl 2022; 61:e202211780. [DOI: 10.1002/anie.202211780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Errui Li
- Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Weijie Zhu
- Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Shuai Fang
- Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Kecheng Jie
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 P. R. China
| |
Collapse
|
21
|
Wang Y, Yao H, Yang L, Quan M, Jiang W. Synthesis, Configurational Analysis, Molecular Recognition and Chirality Sensing of Methylene‐Bridged Naphthotubes. Angew Chem Int Ed Engl 2022; 61:e202211853. [DOI: 10.1002/anie.202211853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Yan‐Fang Wang
- Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Huan Yao
- Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Liu‐Pan Yang
- Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Mao Quan
- Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Wei Jiang
- Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| |
Collapse
|
22
|
Wang YF, Yao H, Yang LP, Quan M, Jiang W. Synthesis, Configurational Analysis, Molecular Recognition and Chirality Sensing of Methylene‐Bridged Naphthotubes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yan Fang Wang
- Southern University of Science and Technology Department of Chemistry CHINA
| | - Huan Yao
- Southern University of Science and Technology Department of Chemistry CHINA
| | - Liu-Pan Yang
- Southern University of Science and Technology Department of Chemistry Xueyuan Blvd 1088Nanshan District 518055 Shenzhen CHINA
| | - Mao Quan
- Southern University of Science and Technology Department of Chemistry Xueyuan Blvd 1088Nanshan District 518055 Shenzhen CHINA
| | - Wei Jiang
- Southern University of Science and Technology Department of Chemistry Xueyuan Blvd 1088, Nanshan District 518055 Shenzhen CHINA
| |
Collapse
|
23
|
Li E, Zhu W, Fang S, Jie K, Huang F. Reimplementing Guest Shape Sorting of Nonporous Adaptive Crystals via Substituent‐Size‐Dependent Solid‐Vapor Postsynthetic Modification. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Errui Li
- Zhejiang University Department of Chemistry CHINA
| | - Weijie Zhu
- Zhejiang University Department of Chemistry CHINA
| | - Shuai Fang
- Zhejiang University Department of Chemistry CHINA
| | - Kecheng Jie
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Feihe Huang
- Zhejiang University Department of Chemistry Faculty of Sciences 310027 Hangzhou CHINA
| |
Collapse
|
24
|
Hou Y, Duan YR, Ding MH, Tang LL, Zeng F. Adsorptive separation of para-xylene by nonporous adaptive crystals of phenanthrene[2]arene. RSC Adv 2022; 12:22060-22063. [PMID: 36043113 PMCID: PMC9362102 DOI: 10.1039/d2ra03773d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
In this work, we developed a new method for the preparation of phenanthrene[2]arene on a large-scale. Meanwhile, the synthetic phenanthrene[2]arene has been successfully used as nonporous adaptive crystals for the separation of para-xylene (pX) from xylene isomers. The crystal structure revealed that one host molecule can adsorb one pX molecule to form the 1@pX complex, in which pX is located in the cavity of the host. A new method for the preparation of phenanthrene[2]arene on a large-scale was developed. The synthetic phenanthrene[2]arene has been successfully used as nonporous adaptive crystals for the separation of para-xylene from xylene isomers.![]()
Collapse
Affiliation(s)
- Ying Hou
- Department of Biology and Chemistry, Hunan University of Science and Engineering Yongzhou 425199 China
| | - Yin-Rong Duan
- Department of Biology and Chemistry, Hunan University of Science and Engineering Yongzhou 425199 China
| | - Man-Hua Ding
- Department of Biology and Chemistry, Hunan University of Science and Engineering Yongzhou 425199 China
| | - Lin-Li Tang
- Department of Biology and Chemistry, Hunan University of Science and Engineering Yongzhou 425199 China
| | - Fei Zeng
- Department of Biology and Chemistry, Hunan University of Science and Engineering Yongzhou 425199 China
| |
Collapse
|
25
|
Cao J, Wu Y, Li Q, Zhu W, Wang Z, Liu Y, Jie K, Zhu H, Huang F. Separation of pyrrolidine from tetrahydrofuran by using pillar[6]arene-based nonporous adaptive crystals. Chem Sci 2022; 13:7536-7540. [PMID: 35872814 PMCID: PMC9242012 DOI: 10.1039/d2sc02494b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/02/2022] [Indexed: 11/29/2022] Open
Abstract
Pyrrolidine, an important feedstock in the chemical industry, is commonly produced via vapor-phase catalytic ammoniation of tetrahydrofuran (THF). Obtaining pyrrolidine with high purity and low energy cost has extremely high economic and environmental values. Here we offer a rapid and energy-saving method for adsorptive separation of pyrrolidine and THF by using nonporous adaptive crystals of per-ethyl pillar[6]arene (EtP6). EtP6 crystals show a superior preference towards pyrrolidine in 50 : 50 (v/v) pyrrolidine/THF mixture vapor, resulting in rapid separation. The purity of pyrrolidine reaches 95% in 15 min of separation, and after 2 h, the purity is found to be 99.9%. Single-crystal structures demonstrate that the selectivity is based on the stability difference of host-guest structures after uptake of THF or pyrrolidine and non-covalent interactions in the crystals. Besides, EtP6 crystals can be recycled efficiently after the separation process owing to reversible transformations between the guest-free and guest-loaded EtP6.
Collapse
Affiliation(s)
- Jiajun Cao
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University Hangzhou 310027 PR China +86-571-8795-3189 +86-571-8795-3189
| | - Yitao Wu
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University Hangzhou 310027 PR China +86-571-8795-3189 +86-571-8795-3189
| | - Qi Li
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University Hangzhou 310027 PR China +86-571-8795-3189 +86-571-8795-3189
| | - Weijie Zhu
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University Hangzhou 310027 PR China +86-571-8795-3189 +86-571-8795-3189
| | - Zeju Wang
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University Hangzhou 310027 PR China +86-571-8795-3189 +86-571-8795-3189
| | - Yang Liu
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University Hangzhou 310027 PR China +86-571-8795-3189 +86-571-8795-3189
| | - Kecheng Jie
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University Hangzhou 310027 PR China +86-571-8795-3189 +86-571-8795-3189
| | - Huangtianzhi Zhu
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University Hangzhou 310027 PR China +86-571-8795-3189 +86-571-8795-3189
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University Hangzhou 310027 PR China +86-571-8795-3189 +86-571-8795-3189
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 PR China
- Green Catalysis Center and College of Chemistry, Zhengzhou University Zhengzhou 450001 PR China
| |
Collapse
|
26
|
Xu K, Li B, Yao S, Li Z, Lu Y, Dong M, Qiu J, Luo L, Li C. Modular Introduction of
endo
‐Binding Sites in a Macrocyclic Cavity towards Selective Recognition of Neutral Azacycles. Angew Chem Int Ed Engl 2022; 61:e202203016. [DOI: 10.1002/anie.202203016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Kaidi Xu
- College of Sciences Center for Supramolecular Chemistry and Catalysis Shanghai University Shanghai 200444 P. R. China
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry Ministry of Education Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 P. R. China
| | - Bin Li
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry Ministry of Education Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 P. R. China
| | - Shibo Yao
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry Ministry of Education Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 P. R. China
| | - Zhaoxian Li
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry Ministry of Education Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 P. R. China
| | - Yunfeng Lu
- College of Sciences Center for Supramolecular Chemistry and Catalysis Shanghai University Shanghai 200444 P. R. China
| | - Ming Dong
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry Ministry of Education Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 P. R. China
| | - Jianfeng Qiu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry Ministry of Education Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 P. R. China
| | - Liqiang Luo
- College of Sciences Center for Supramolecular Chemistry and Catalysis Shanghai University Shanghai 200444 P. R. China
| | - Chunju Li
- College of Sciences Center for Supramolecular Chemistry and Catalysis Shanghai University Shanghai 200444 P. R. China
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry Ministry of Education Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 P. R. China
| |
Collapse
|
27
|
Li C, Xu K, Li B, Yao S, Li Z, Lu Y, Dong M, Qiu J, Luo L. Modular Introduction of Endo‐Binding Sites in Macrocycle Cavity towards Selective Recognition of Neutral Azacycles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chunju Li
- Tianjin Normal University Chemistry No393 west Binshui Road Tianjin CHINA
| | - Kaidi Xu
- Shanghai University College of Science CHINA
| | - Bin Li
- Tianjin Normal University College of Chemistry CHINA
| | - Shibo Yao
- Tianjin Normal University College of Chemistry CHINA
| | - Zhaoxian Li
- Tianjin Normal University College of Chemistry CHINA
| | - Yunfeng Lu
- Shanghai University College of Science CHINA
| | - Ming Dong
- Tianjin Normal University College of Chemistry CHINA
| | - Jianfeng Qiu
- Tianjin Normal University College of Chemistry CHINA
| | - Liqiang Luo
- Shanghai University College of Science CHINA
| |
Collapse
|
28
|
Zhou HY, Chen CF. Adsorptive separation of picoline isomers by adaptive calix[3]acridan crystals. Chem Commun (Camb) 2022; 58:4356-4359. [PMID: 35293908 DOI: 10.1039/d2cc00943a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The exploration of macrocycle-based nonporous adaptive crystals (NACs) for adsorption and separation has been one of the hotspots in supramolecular chemistry and crystal engineering. Herein, we developed calix[3]acridan-based NACs to separate industrially important 4-picoline from its isomer mixtures with over 93.8% purity.
Collapse
Affiliation(s)
- He-Ye Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|