1
|
Yanshin AO, Kiselev VG, Baklanov AV. Kinetic Isotope Effect in the Unfolding of a Protein Secondary Structure: Calculations for Beta-Sheet Polyglycine Dimers as a Model. Biomolecules 2025; 15:92. [PMID: 39858486 PMCID: PMC11764423 DOI: 10.3390/biom15010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
In the present work, we performed calculations of the kinetic isotope effect (KIE) on H/D, 14N/15N, 16O/18O, and 12C/13C isotopic substitution in the dissociation of beta-sheet polyglycine dimers of different lengths into two monomer chains. This dissociation reaction, proceeding via breaking of the interchain hydrogen bonds (H-bonds), is considered to be a model of unfolding of the secondary structure of proteins. The calculated strengthening of the interchain hydrogen bonds N-H⋯O=C due to heavy isotope substitution decreases in the row H/D >> 14N/15N > 16O/18O > 12C/13C. The KIE for H/D substitution, defined as the ratio of the rate constants k(H)k(D), was calculated with the use of a "completely loose" transition state model. The results of the calculations show that a very high H/D isotope effect can be achieved for proteins even with moderately long chains connected by dozens of interchain H-bonds. The results obtained also indicate that the heavy isotope substitution in the internal (interchain) and external H-bonds, located on the periphery of a dimer, can provide comparable effects on secondary structure stabilization.
Collapse
Affiliation(s)
- Alexey O. Yanshin
- Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya Street, Novosibirsk 630090, Russia; (A.O.Y.)
- Department of Physics, Novosibirsk State University, 1 Pirogova Street, Novosibirsk 630090, Russia
| | - Vitaly G. Kiselev
- Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya Street, Novosibirsk 630090, Russia; (A.O.Y.)
- Department of Physics, Novosibirsk State University, 1 Pirogova Street, Novosibirsk 630090, Russia
| | - Alexey V. Baklanov
- Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya Street, Novosibirsk 630090, Russia; (A.O.Y.)
| |
Collapse
|
2
|
Liu D, Robin S, Gloaguen E, Brenner V, Mons M, Aitken DJ. Effects of sulfoxide and sulfone sidechain-backbone hydrogen bonding on local conformations in peptide models. Chem Commun (Camb) 2024; 60:2074-2077. [PMID: 38293794 DOI: 10.1039/d3cc05933b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
We examine peptide model systems designed to probe short-range N-H⋯OS sidechain-backbone hydrogen bonding involving amino acid residues with sidechain sulfoxide or sulfone functional groups and its effects on local conformations. A strong 7-membered ring hydrogen bond of this type accompanies an intra-residue N-H⋯OC interaction and stabilizes an extended backbone conformation in preference to classical folded structures.
Collapse
Affiliation(s)
- Dayi Liu
- Université Paris-Saclay, CNRS, ICMMO, Orsay 91400, France.
| | - Sylvie Robin
- Université Paris-Saclay, CNRS, ICMMO, Orsay 91400, France.
- Université Paris Cité, Faculté de Pharmacie, Paris 75006, France
| | - Eric Gloaguen
- Université Paris-Saclay, CNRS, ISMO, Orsay 91400, France
| | - Valérie Brenner
- Université Paris-Saclay, CEA, DRF, Gif-sur-Yvette 91191, France
| | - Michel Mons
- Université Paris-Saclay, CEA, LIDYL, Gif-sur-Yvette 91191, France.
| | - David J Aitken
- Université Paris-Saclay, CNRS, ICMMO, Orsay 91400, France.
| |
Collapse
|
3
|
Perez Mellor AF, Brazard J, Kozub S, Bürgi T, Szweda R, Adachi TBM. Unveiling the Configurational Landscape of Carbamate: Paving the Way for Designing Functional Sequence-Defined Polymers. J Phys Chem A 2023; 127:7309-7322. [PMID: 37624607 PMCID: PMC10493977 DOI: 10.1021/acs.jpca.3c02442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/11/2023] [Indexed: 08/26/2023]
Abstract
Carbamate is an emerging class of a polymer backbone for constructing sequence-defined, abiotic polymers. It is expected that new functional materials can be de novo designed by controlling the primary polycarbamate sequence. While amino acids have been actively studied as building blocks for protein folding and peptide self-assembly, carbamates have not been widely investigated from this perspective. Here, we combined infrared (IR), vibrational circular dichroism (VCD), and nuclear magnetic resonance (NMR) spectroscopy with density functional theory (DFT) calculations to understand the conformation of carbamate monomer units in a nonpolar, aprotic environment (chloroform). Compared with amino acid building blocks, carbamates are more rigid, presumably due to the extended delocalization of π-electrons on the backbones. Cis configurations of the amide bond can be energetically stable in carbamates, whereas peptides often assume trans configurations at low energies. This study lays an essential foundation for future developments of carbamate-based sequence-defined polymer material design.
Collapse
Affiliation(s)
- Ariel F. Perez Mellor
- Department
of Physical Chemistry, Sciences II, University
of Geneva, 30, Quai Ernest Ansermet, Geneva 1211, Switzerland
| | - Johanna Brazard
- Department
of Physical Chemistry, Sciences II, University
of Geneva, 30, Quai Ernest Ansermet, Geneva 1211, Switzerland
| | - Sara Kozub
- Łukasiewicz
Research Network − PORT Polish Center for Technology Development, Stabłowicka 147, Wrocław 54-066, Poland
| | - Thomas Bürgi
- Department
of Physical Chemistry, Sciences II, University
of Geneva, 30, Quai Ernest Ansermet, Geneva 1211, Switzerland
| | - Roza Szweda
- Łukasiewicz
Research Network − PORT Polish Center for Technology Development, Stabłowicka 147, Wrocław 54-066, Poland
| | - Takuji B. M. Adachi
- Department
of Physical Chemistry, Sciences II, University
of Geneva, 30, Quai Ernest Ansermet, Geneva 1211, Switzerland
| |
Collapse
|
4
|
Liu D, Bardaud JX, Imani Z, Robin S, Gloaguen E, Brenner V, Aitken DJ, Mons M. Length-Dependent Transition from Extended to Folded Shapes in Short Oligomers of an Azetidine-Based α-Amino Acid: The Critical Role of NH···N H-Bonds. Molecules 2023; 28:5048. [PMID: 37446709 DOI: 10.3390/molecules28135048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Hydrogen bonds (H-bonds) are ubiquitous in peptides and proteins and are central to the stabilization of their structures. Inter-residue H-bonds between non-adjacent backbone amide NH and C=O motifs lead to the well-known secondary structures of helices, turns and sheets, but it is recognized that other H-bonding modes may be significant, including the weak intra-residue H-bond (called a C5 H-bond) that implicates the NH and C=O motifs of the same amino acid residue. Peptide model compounds that adopt stable C5 H-bonds are not readily available and the so-called 2.05-helix, formed by successive C5 H-bonds, is an elusive secondary structure. Using a combination of theoretical chemistry and spectroscopic studies in both the gas phase and solution phase, we have demonstrated that derivatives of 3-amino-1-methylazetidine-3-carboxylic acid, Aatc(Me) can form sidechain-backbone N-H···N C6γ H-bonds that accompany-and thereby stabilize-C5 H-bonds. In the capped trimer of Aatc(Me), extended C5/C6γ motifs are sufficiently robust to challenge classical 310-helix formation in solution and the fully-extended 2.05-helix conformer has been characterized in the gas phase. Concurrent H-bonding support for successive C5 motifs is a new axiom for stabilizing the extended backbone secondary structure in short peptides.
Collapse
Affiliation(s)
- Dayi Liu
- Université Paris-Saclay, CNRS, ICMMO, 91400 Orsay, France
| | | | - Zeynab Imani
- Université Paris-Saclay, CNRS, ICMMO, 91400 Orsay, France
| | - Sylvie Robin
- Université Paris-Saclay, CNRS, ICMMO, 91400 Orsay, France
- Université Paris Cité, Faculté de Pharmacie, 75006 Paris, France
| | - Eric Gloaguen
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191 Gif-sur-Yvette, France
| | - Valérie Brenner
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191 Gif-sur-Yvette, France
| | - David J Aitken
- Université Paris-Saclay, CNRS, ICMMO, 91400 Orsay, France
| | - Michel Mons
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191 Gif-sur-Yvette, France
| |
Collapse
|
5
|
Adhav V, Saikrishnan K. The Realm of Unconventional Noncovalent Interactions in Proteins: Their Significance in Structure and Function. ACS OMEGA 2023; 8:22268-22284. [PMID: 37396257 PMCID: PMC10308531 DOI: 10.1021/acsomega.3c00205] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023]
Abstract
Proteins and their assemblies are fundamental for living cells to function. Their complex three-dimensional architecture and its stability are attributed to the combined effect of various noncovalent interactions. It is critical to scrutinize these noncovalent interactions to understand their role in the energy landscape in folding, catalysis, and molecular recognition. This Review presents a comprehensive summary of unconventional noncovalent interactions, beyond conventional hydrogen bonds and hydrophobic interactions, which have gained prominence over the past decade. The noncovalent interactions discussed include low-barrier hydrogen bonds, C5 hydrogen bonds, C-H···π interactions, sulfur-mediated hydrogen bonds, n → π* interactions, London dispersion interactions, halogen bonds, chalcogen bonds, and tetrel bonds. This Review focuses on their chemical nature, interaction strength, and geometrical parameters obtained from X-ray crystallography, spectroscopy, bioinformatics, and computational chemistry. Also highlighted are their occurrence in proteins or their complexes and recent advances made toward understanding their role in biomolecular structure and function. Probing the chemical diversity of these interactions, we determined that the variable frequency of occurrence in proteins and the ability to synergize with one another are important not only for ab initio structure prediction but also to design proteins with new functionalities. A better understanding of these interactions will promote their utilization in designing and engineering ligands with potential therapeutic value.
Collapse
Affiliation(s)
- Vishal
Annasaheb Adhav
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Kayarat Saikrishnan
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
6
|
Imani Z, Mundlapati VR, Brenner V, Gloaguen E, Le Barbu-Debus K, Zehnacker-Rentien A, Robin S, Aitken DJ, Mons M. Non-covalent interactions reveal the protein chain δ conformation in a flexible single-residue model. Chem Commun (Camb) 2023; 59:1161-1164. [PMID: 36625351 DOI: 10.1039/d2cc06658k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The δ conformation is a local secondary structure in proteins that implicates a πamide N-H⋯N interaction between a backbone N atom and the NH of the following residue. Small-molecule models thereof have been limited so far to rigid proline-type compounds. We show here that in derivatives of a cyclic amino acid with a sulphur atom in the γ-position, specific side-chain/backbone N-H⋯S interactions stabilize the δ conformation sufficiently to allow it to compete with classical C5 and C7 H-bonded conformers.
Collapse
Affiliation(s)
- Zeynab Imani
- Université Paris-Saclay, CNRS, ICMMO, Orsay 91400, France
| | | | - Valérie Brenner
- Université Paris-Saclay, CEA, CNRS, LIDYL, Gif-sur-Yvette 91191, France
| | - Eric Gloaguen
- Université Paris-Saclay, CEA, CNRS, LIDYL, Gif-sur-Yvette 91191, France
| | | | | | - Sylvie Robin
- Université Paris-Saclay, CNRS, ICMMO, Orsay 91400, France.,Université de Paris, Faculté de Pharmacie, Paris 75006, France
| | - David J Aitken
- Université Paris-Saclay, CNRS, ICMMO, Orsay 91400, France
| | - Michel Mons
- Université Paris-Saclay, CEA, CNRS, LIDYL, Gif-sur-Yvette 91191, France
| |
Collapse
|
7
|
Liu Y, Liu CP, Mang CY, Wu KC. Upon DFT-D3 dispersion correction and ECD spectral confirmation, only several conformers can stably coexist for three fungal cycloaspeptides (A, D, G). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 283:121710. [PMID: 35952587 DOI: 10.1016/j.saa.2022.121710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Dispersion correction in theoretical determination of cyclopeptide conformations is emphasized. Whether in gas approximation or in solvation simulation, the density functional theory with London dispersion correction (DFT-D3) demonstrates that only 2-3 conformers can stably coexist for cycloaspeptides (A, D, G) at B3LYP-D3 and CAM-B3LYP-D3. Conformational rationality is confirmed by electronic circular dichroism (ECD). Whether for Cotton effect or for excitation energy, TD-B3LYP-D3 has better performances than TD-CAM-B3LYP-D3 because the former can better reproduce the experiment. A molecular orbital analysis is used to interpret ECD, where two energy bands observed in experiment originates from the ππ* transitions other than the σπ* transitions. Long-range correction and solvent effect make H-bonds shorten, and dispersion correction makes them further shorten.
Collapse
Affiliation(s)
- Yong Liu
- College of Pharmacy, Dali University, Dali 671000, China
| | - Cai-Ping Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Chao-Yong Mang
- College of Pharmacy, Dali University, Dali 671000, China.
| | - Ke-Chen Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| |
Collapse
|
8
|
Dutta J, Routray C, Pandey S, Biswal HS. Intermolecular noncovalent interactions with carbon in solution. Chem Sci 2022; 13:14327-14335. [PMID: 36545132 PMCID: PMC9749111 DOI: 10.1039/d2sc05431k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/20/2022] [Indexed: 11/22/2022] Open
Abstract
One of the most familiar carbon-centered noncovalent interactions (NCIs) involving an antibonding π*-orbital situated at the Bürgi-Dunitz angle from the electron donor, mostly lone pairs of electrons, is known as n → π* interactions, and if it involves a σ* orbital in a linear fashion, then it is known as the carbon bond. These NCIs can be intra- or inter-molecular and are usually weak in strength but have a paramount effect on the structure and function of small-molecular crystals and proteins. Surprisingly, the experimental evidence of such interactions in the solution phase is scarce. It is even difficult to determine the interaction energy in the solution. Using NMR spectroscopy aided with molecular dynamics (MD) simulation and high-level quantum mechanical calculations, herein we provide the experimental evidence of intermolecular carbon-centered NCIs in solution. The challenge was to find appropriate heterodimers that could sustain room temperature thermal energy and collisions from the solvent molecules. However, after several trial model compounds, the pyridine-N-oxide:dimethyltetracyanocyclopropane (PNO-DMTCCP) complex was found to be a good candidate for the investigation. NBO analyses show that the PNO:DMTCCP complex is stabilized mainly by intermolecular n → π* interaction when a weaker carbon bond gives extra stability to the complex. From the NMR study, it is observed that the NCIs between DMTCCP and PNO are enthalpy driven with an enthalpy change of -28.12 kJ mol-1 and dimerization energy of ∼-38 kJ mol-1 is comparable to the binding energies of a conventional hydrogen-bonded dimer. This study opens up a new strategy to investigate weak intermolecular interactions such as n → π* interaction and carbon bonds in the solution phase.
Collapse
Affiliation(s)
- Juhi Dutta
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO - Bhimpur-Padanpur, Via-Jatni, District - Khurda PIN - 752050 Bhubaneswar India +91-674-2494-185, +91-674-2494-186
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| | - Chinmay Routray
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO - Bhimpur-Padanpur, Via-Jatni, District - Khurda PIN - 752050 Bhubaneswar India +91-674-2494-185, +91-674-2494-186
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| | - Shalini Pandey
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO - Bhimpur-Padanpur, Via-Jatni, District - Khurda PIN - 752050 Bhubaneswar India +91-674-2494-185, +91-674-2494-186
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| | - Himansu S Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO - Bhimpur-Padanpur, Via-Jatni, District - Khurda PIN - 752050 Bhubaneswar India +91-674-2494-185, +91-674-2494-186
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| |
Collapse
|
9
|
Li J, Chen J, Wang Y, Yao L. Detecting the Hydrogen Bond Cooperativity in a Protein β-Sheet by H/D Exchange. Int J Mol Sci 2022; 23:ijms232314821. [PMID: 36499147 PMCID: PMC9740688 DOI: 10.3390/ijms232314821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
The hydrogen bond (H-bond) cooperativity in the β-sheet of GB3 is investigated by a NMR hydrogen/deuterium (H/D) exchange method. It is shown that the weakening of one backbone N-H…O=C H-bond between two β-strands, β1 and β2, due to the exchange of NH to ND of the H-bond donor in β1, perturbs the chemical shift of 13Cα, 13Cβ, 1Hα, 1HN, and 15N of the H-bond acceptor and its following residue in β2. Quantum mechanical calculations suggest that the -H-bond chemical shift isotope effect is caused by the structural reorganization in response to the H-bond weakening. This structural reorganization perturbs four neighboring H-bonds, with three being weaker and one being stronger, indicating that three H-bonds are cooperative and one is anticooperative with the perturbed H-bond. The sign of the cooperativity depends on the relative position of the H-bonds. This H-bond cooperativity, which contributes to β-sheet stability overall, can be important for conformational coupling across the β-sheet.
Collapse
Affiliation(s)
- Jingwen Li
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jingfei Chen
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| | - Yefei Wang
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Correspondence: (Y.W.); (L.Y.)
| | - Lishan Yao
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Correspondence: (Y.W.); (L.Y.)
| |
Collapse
|
10
|
Le Barbu-Debus K, Pérez-Mellor A, Lepère V, Zehnacker A. How change in chirality prevents β-amyloid type interaction in a protonated cyclic dipeptide dimer. Phys Chem Chem Phys 2022; 24:19783-19791. [PMID: 35969161 DOI: 10.1039/d2cp03110h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The protonated dimers of the diketopiperazine dipeptide cyclo (LPhe-LHis) and cyclo (LPhe-DHis) are studied by laser spectroscopy combined with mass spectrometry to shed light on the influence of stereochemistry on the clustering propensity of cyclic dipeptides. The marked spectroscopic differences experimentally observed in the hydride stretch region are well accounted for by the results of DFT calculations. Both diastereomeric protonated dimers involve a strong ionic hydrogen bond from the protonated imidazole ring of one monomer to the neutral imidazole nitrogen of the other. While this strong interaction is accompanied by a single NH⋯O hydrogen bond between the amide functions of the two moieties for the protonated dimer of cyclo (LPhe-DHis), that of cyclo (LPhe-LHis) involves two NH⋯O interactions, forming the motif of an antiparallel β sheet. Therefore, a change in chirality of the residue prevents the formation of the β sheet pattern observed in the amyloid type aggregation. These results emphasize the peculiar role of the histidine residue in peptide structure and interaction.
Collapse
Affiliation(s)
- Katia Le Barbu-Debus
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, F-91405 Orsay, France.
| | - Ariel Pérez-Mellor
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, F-91405 Orsay, France.
| | - Valéria Lepère
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, F-91405 Orsay, France.
| | - Anne Zehnacker
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, F-91405 Orsay, France.
| |
Collapse
|
11
|
Kumar S, Borish K, Dey S, Nagesh J, Das A. Sequence dependent folding motifs of the secondary structures of Gly-Pro and Pro-Gly containing oligopeptides. Phys Chem Chem Phys 2022; 24:18408-18418. [PMID: 35880873 DOI: 10.1039/d2cp01306a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Folding motifs of the secondary structures of peptides and proteins are primarily based on the hydrogen bonding interactions in the backbone as well as the sequence of the amino acid residues present. For instance, the β-turn structure directed by the Pro-Gly sequence is the key to the β-hairpin structure of peptides/proteins as well as a selective site for the enzymatic hydroxylation of pro-collagen. Herein, we have investigated the sequence dependent folding motifs of end-protected Gly-Pro and Pro-Gly dipeptides using a combination of gas phase laser spectroscopy, quantum chemistry calculations, solution phase IR and NMR spectroscopy and single crystal X-Ray diffraction (XRD). All three observed conformers of the Gly-Pro peptide in the gas phase have been found to have extended β-strand or polyproline-II (PP-II) structures with C5-C7 hydrogen bonding interactions, which correlates well with the structure obtained from solution phase spectroscopy and XRD. On the other hand, we have found that the Pro-Gly peptide has a C10/β-turn structure in the solution phase in contrast to the C7-C7 (i.e. 27-ribbon) structure observed in the gas phase. Although the lowest energy structure in the gas phase is not C10, we find that C7-C7 is an abundantly found structural motif of Pro-Gly containing peptides in the Cambridge Structural Database, indicating that the gas phase conformers are not sampling any unusual forms. We surmise that the role of the solvent could be crucial in dictating the preferential stabilization of the C10 structure in the solution phase. The present investigation provides a comprehensive picture of the folding motifs of the Gly-Pro and Pro-Gly peptides observed in the gas phase and condensed phase weaving a fine interplay of the intrinsic conformational properties, solvation, and crystal packing of the peptides.
Collapse
Affiliation(s)
- Satish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Kshetrimayum Borish
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Sanjit Dey
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Jayashree Nagesh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore-560012, India.
| | - Aloke Das
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| |
Collapse
|
12
|
Steinert RM, Kasireddy C, Heikes ME, Mitchell-Koch KR. Newly identified C–H⋯O hydrogen bond in histidine. Phys Chem Chem Phys 2022; 24:19233-19251. [DOI: 10.1039/d2cp02048c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Histidine C–H bonds observed in protein structures include (clockwise from top left): myoglobin, β-lactamase, and photoactive yellow protein; calculations indicate that tautomeric/protonation state influences H-bonding ability (bottom left).
Collapse
Affiliation(s)
- Ryan M. Steinert
- Department of Chemistry and Biochemistry, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260-0051, USA
| | - Chandana Kasireddy
- Department of Chemistry and Biochemistry, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260-0051, USA
| | - Micah E. Heikes
- Department of Chemistry and Biochemistry, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260-0051, USA
| | - Katie R. Mitchell-Koch
- Department of Chemistry and Biochemistry, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260-0051, USA
| |
Collapse
|