1
|
Wang J, Zhao L, Li X, Gao Y, Yong W, Jin Y, Dong Y. Development of aptamer-based lateral flow devices for rapid detection of SARS-CoV-2 S protein and uncertainty assessment. Talanta 2025; 281:126825. [PMID: 39276574 DOI: 10.1016/j.talanta.2024.126825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/18/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
The outbreak and spread of COVID-19 have highlighted the urgent need for early diagnosis of SARS-CoV-2. Nucleic acid testing as an authoritative tool, is cumbersome, time-consuming, and easy to cross-infect, while the available antibody self-testing kits are deficient in sensitivity and stability. In this study, we developed competitive aptamer-based lateral flow devices (Apt-LFDs) for the quantitative detection of SARS-CoV-2 spike (S) protein. Molecular docking simulation was used to analyze the active binding sites of the aptamer to S protein, guiding complementary DNA (cDNA) design. Then a highly efficient freezing strategy was applied for the conjugation of gold nanoparticles (AuNPs) and DNA probes. Under optimal conditions, the linear range of the constructed Apt-LFDs was 0.1-1 μg/mL, and the limit of detection (LOD) was 51.81 ng/mL. The cross-reactivity test and stability test of the Apt-LFDs showed good specificity and reliability. The Apt-LFDs had recoveries ranging from 89.45 % to 117.12 % in pharyngeal swabs. Notably, the uncertainty of the analytical result was evaluated using a "bottom-up" approach. At a 95 % confidence level, the uncertainty report of (453.37±54.86) ng/mL with k = 2 was yielded. Overall, this study provides an important reference for the convenient and reliable detection of virus proteins based on LFDs.
Collapse
Affiliation(s)
- Jiachen Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Lianhui Zhao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Xiaotong Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Yunhua Gao
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, PR China
| | - Wei Yong
- Chinese Academy of Inspection and Quarantine, Beijing, 100020, PR China
| | - Yong Jin
- Chinese Academy of Inspection and Quarantine, Beijing, 100020, PR China
| | - Yiyang Dong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| |
Collapse
|
2
|
Zhang J, Liu J, Qiao L, Zhang Q, Hu J, Zhang CY. Recent Advance in Single-Molecule Fluorescent Biosensors for Tumor Biomarker Detection. BIOSENSORS 2024; 14:540. [PMID: 39589999 PMCID: PMC11591580 DOI: 10.3390/bios14110540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
The construction of biosensors for specific, sensitive, and rapid detection of tumor biomarkers significantly contributes to biomedical research and early cancer diagnosis. However, conventional assays often involve large sample consumption and poor sensitivity, limiting their further application in real samples. In recent years, single-molecule biosensing has emerged as a robust tool for detecting and characterizing biomarkers due to its unique advantages including simplicity, low sample consumption, ultra-high sensitivity, and rapid assay time. This review summarizes the recent advances in the construction of single-molecule biosensors for the measurement of various tumor biomarkers, including DNAs, DNA modifications, RNAs, and enzymes. We give a comprehensive review about the working principles and practical applications of these single-molecule biosensors. Additionally, we discuss the challenges and limitations of current single-molecule biosensors, and highlight the future directions.
Collapse
Affiliation(s)
- Jie Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China (C.-y.Z.)
| | - Jiawen Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Lixue Qiao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Qian Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Juan Hu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China (C.-y.Z.)
| | - Chun-yang Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China (C.-y.Z.)
| |
Collapse
|
3
|
Su Y, Zhou L. Review of single-molecule immunoassays: Non-chip and on-chip Assays. Anal Chim Acta 2024; 1322:342885. [PMID: 39182983 DOI: 10.1016/j.aca.2024.342885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 08/27/2024]
Abstract
Enhancing the sensitivity of immunoassays is an important requirement in the field of immunology, especially in light of rapid developments in genetic testing, making the detection of low-abundance protein biomarkers crucial. Therefore, innovations in highly sensitive immunoassays are imperative. This demand has led to the emergence of single-molecule immunoassays (SMIs), driving advancements in early diagnostic techniques, and ushering in a new era of immunoassays. This review begins by tracing the development of immunoassays and offers a detailed discussion of SMI technology across two distinct pathways: non-chip (SMI without microfluidic chips) and on-chip (SMI with microfluidic chips). Furthermore, we evaluated and compared these methods using two pathways. In addition, this review discusses the significance of SMI techniques in the diagnosis of various diseases and their current applications in laboratory and clinical settings. The progress of SMI in commercial applications and suggestions for innovative directions are also summarized. Despite the considerable potential of SMI, these technologies face challenges in practical application, particularly in developing countries and economically disadvantaged regions. The final section of this review addresses the challenges and prospects of these technologies.
Collapse
Affiliation(s)
- Yan Su
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lei Zhou
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing, 100190, China; Biosafety Research Center Yangtze River Delta in Zhangjiagang, Suzhou, 215611, China.
| |
Collapse
|
4
|
Jiang M, Zhou J, Chai Y, Yuan R. Ultrahigh-Speed 3D DNA Walker with Dual Self-Protected DNAzymes for Ultrasensitive Fluorescence Detection and Intracellular Imaging of microRNA. Anal Chem 2024; 96:9866-9875. [PMID: 38835317 DOI: 10.1021/acs.analchem.4c00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Herein, a dual self-protected DNAzyme-based 3D DNA walker (dSPD walker), composed of activated dual self-protected walking particles (ac-dSPWPs) and track particles (TPs), was constructed for ultrasensitive and ultrahigh-speed fluorescence detection and imaging of microRNAs (miRNAs) in living cells. Impressively, compared with the defect that "one" target miRNA only initiates "one" walking arm of the conventional single self-protected DNAzyme walker, the dSPD walker benefits from the secondary amplification and spatial confinement effect and could guide "one" target miRNA to generate "n" secondary targets, thereby initiating "n" nearby walking strands immediately, realizing the initial rate over one-magnitude-order faster than that of the conventional one. Moreover, in the process of relative motion between ac-dSPWPs and TPs, the ac-dSPWPs could cleave multiple substrate strands simultaneously to speed up movement and reduce the derailment rate, as well as combine with successive TPs to facilitate a large amount of continuous signal accumulation, achieving an ultrafast detection of miRNA-221 within 10 min in vitro and high sensitivity with a low detection limit of 0.84 pM. In addition, the DNA nanospheres obtained by the rolling circle amplification reaction can capture the Cy5 fluorescence dispersed in liquids, which achieves the high-contrast imaging of miRNA-221, resulting in further ultrasensitive imaging of miRNA-221 in cancer cells. The proposed strategy has made a bold innovation in the rapid and sensitive detection as well as intracellular imaging of low-abundance biomarkers, offering promising application in early diagnosis and relevant research of cancer and tumors.
Collapse
Affiliation(s)
- Mengshi Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Jie Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| |
Collapse
|
5
|
Wang LJ, Liu Q, Lu YY, Liang L, Zhang CY. Silver-Coordinated Watson-Crick Pairing-Driven Three-Dimensional DNA Walker for Locus-Specific Detection of Genomic N6-Methyladenine and N4-Methylcytosine at the Single-Molecule Level. Anal Chem 2024; 96:2191-2198. [PMID: 38282288 DOI: 10.1021/acs.analchem.3c05184] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
N6-Methyladenine (6mdA) and N4-methylcytosine (4mdC) are the two most dominant DNA modifications in both prokaryotes and eukaryotes, but standard hybridization-based techniques cannot be applied for the 6mdA/4mdC assay. Herein, we demonstrate the silver-coordinated Watson-Crick pairing-driven three-dimensional (3D) DNA walker for locus-specific detection of genomic 6mdA/4mdC at the single-molecule level. 6mdA-DNA and 4mdC-DNA can selectively hybridize with the binding probes (BP1 and BP2) to form 6mdA-DNA-BP1 and 4mdC-DNA-BP2 duplexes. The 6mdA-C/4mdC-A mismatches cannot be stabilized by AgI, and thus, 18-nt BP1/BP2 cannot be extended by the catalysis of KF exonuclease. Through toehold-mediated strand displacement (TMSD), the signal probe (SP1/SP2) functionalized on the gold nanoparticles (AuNPs) can competitively bind to BP1/BP2 in 6mdA-DNA-BP1/4mdC-DNA-BP2 duplex to obtain SP1-18-nt BP1 and SP2-18-nt BP2 duplexes. The resulting DNA duplexes can act as the substrates of lambda exonuclease, leading to the cleavage of SP1/SP2 and the release of Cy3/Cy5 and 18-nt BP1/BP2. The released 18-nt BP1/BP2 can subsequently serve as the walker DNA, moving along the surface of the AuNP to activate dynamic 3D DNA walking and releasing abundant Cy3/Cy5. The released Cy3/Cy5 can be quantified by single-molecule imaging. This nanosensor exhibits high sensitivity with a limit of detection (LOD) of 9.80 × 10-15 M for 6mdA-DNA and 9.97 × 10-15 M for 4mdC-DNA. It can discriminate 6mdA-/4mdC-DNA from unmodified genomic DNAs, distinguish 0.01% 6mdA-/4mdC-DNA from excess unmethylated DNAs, and quantify 6mdA-/4mdC-DNA at specific sites in genomic DNAs of liver cancer cells and Escherichia coli plasmid cloning vector, providing a new platform for locus-specific analysis of 6mdA/4mdC in genomic DNAs.
Collapse
Affiliation(s)
- Li-Juan Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Qian Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ying-Ying Lu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Le Liang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
6
|
Wei R, Wang K, Liu X, Shi M, Pan W, Li N, Tang B. Stimuli-responsive probes for amplification-based imaging of miRNAs in living cells. Biosens Bioelectron 2023; 239:115584. [PMID: 37619479 DOI: 10.1016/j.bios.2023.115584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/29/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
MicroRNAs (miRNAs) have emerged as important biomarkers in biomedicine and bioimaging due to their roles in various physiological and pathological processes. Real-time and in situ monitoring of dynamic fluctuation of miRNAs in living cells is crucial for understanding these processes. However, current miRNA imaging probes still have some limitations, including the lack of effective amplification methods for low abundance miRNAs bioanalysis and uncontrollable activation, leading to background signals and potential false-positive results. Therefore, researchers have been integrating activatable devices with miRNA amplification techniques to design stimuli-responsive nanoprobes for "on-demand" and precise imaging of miRNAs in living cells. In this review, we summarize recent advances of stimuli-responsive probes for the amplification-based imaging of miRNAs in living cells and discuss the future challenges and opportunities in this field, aiming to provide valuable insights for accurate disease diagnosis and monitoring.
Collapse
Affiliation(s)
- Ruyue Wei
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Kaixian Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Xiaohan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Mingwan Shi
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China; Laoshan Laboratory, Qingdao, 266237, PR China.
| |
Collapse
|
7
|
Jia L, Hu Q, Zhang T, Wang Z, Wu D, Xie X, Wang S. Engineering Biomimetic Biosensor Using Dual-Targeting Multivalent Aptamer Regulated 3D DNA Walker Enables High-Performance Detection of Heterogeneous Circulating Tumor Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302542. [PMID: 37222122 DOI: 10.1002/smll.202302542] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/04/2023] [Indexed: 05/25/2023]
Abstract
The phenotypic heterogeneity of circulating tumor cells (CTCs) and the nonspecific adsorption of background cells impede the effective and sensitive detection of rare CTCs. Although leukocyte membrane coating approach has a good antileukocyte adhesion ability and holds great promise for addressing the challenge of capture purity, its limited specificity and sensitivity prevent its use in the detection of heterogeneous CTCs. To overcome these obstacles, a biomimetic biosensor that integrated dual-targeting multivalent aptamer/walker duplex functionalized biomimetic magnetic beads and an enzyme-powered DNA walker signal amplification strategy is designed. As compared to conventional leukocyte membrane coating, the biomimetic biosensor achieves efficient and high purity enrichment of heterogeneous CTCs with different epithelial cell adhesion molecule (EpCAM) expression while minimizing the interference of leukocytes. Meanwhile, the capture of target cells can trigger the release of walker strands to activate an enzyme-powered DNA walker, resulting in cascade signal amplification and the ultrasensitive and accurate detection of rare heterogeneous CTCs. Importantly, the captured CTCs remained viable and can be recultured in vitro with success. Overall, this work provides a new perspective for the efficient detection of heterogeneous CTCs by biomimetic membrane coating and paves the way for early cancer diagnosis.
Collapse
Affiliation(s)
- Lanlan Jia
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, P. R. China
| | - Qi Hu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, P. R. China
| | - Tingting Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, P. R. China
| | - Zhaojia Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, P. R. China
| | - Dan Wu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, P. R. China
| | - Xiaoyu Xie
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, P. R. China
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, P. R. China
- School of Medicine, Tibet University, Lhasa, 850000, P. R. China
| |
Collapse
|
8
|
Zhu J, Zhao X, Mao J, Na N, Ouyang J. Single-Molecule Evaluation of the SARS-CoV-2 Nucleocapsid Protein Using Gold Particle-in-a-Frame Nanostructures Enhanced Fluorescent Assay. Anal Chem 2023; 95:5267-5274. [PMID: 36912606 PMCID: PMC10022750 DOI: 10.1021/acs.analchem.2c05191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/01/2023] [Indexed: 03/14/2023]
Abstract
Ultrasensitive evaluation of low-abundance analytes, particularly with limits approaching a single molecule, is a key challenge in the design of an assay for profiling severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen. Herein, we report an aptamer claw strategy for directly evaluating the SARS-CoV-2 antigen based on gold particle-in-a-frame nanostructures (Au PIAFs). Au PIAF was used as a metal-enhanced fluorescence material. The assay integrated with a microplate reader achieved a sensitivity of 44 fg·mL-1 in under 3 min and accurately detected the SARS-CoV-2 nucleocapsid protein (N protein) in human saliva samples. When our assay is combined with a single-molecule counting platform, the limit of detection can be as low as 0.84 ag·mL-1. This rapid and ultrasensitive assay holds promise as a tool for screening SARS-CoV-2 and other contagious viruses.
Collapse
Affiliation(s)
- Jiale Zhu
- Key Laboratory of Theoretical and Computational
Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal
University, Beijing 100875, China
| | - Xuan Zhao
- Key Laboratory of Theoretical and Computational
Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal
University, Beijing 100875, China
| | - Jinpeng Mao
- Department of Chemistry, Tsinghua
University, Beijing 100084, China
| | - Na Na
- Key Laboratory of Theoretical and Computational
Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal
University, Beijing 100875, China
| | - Jin Ouyang
- Key Laboratory of Theoretical and Computational
Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal
University, Beijing 100875, China
| |
Collapse
|
9
|
Wang L, Wang K, Wang X, Niu R, Chen X, Zhu Y, Sun Z, Yang J, Liu G, Luo Y. Intelligent Dual-Lock Deoxyribonucleic Acid Automatons Boosting Precise Tumor Imaging. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3826-3838. [PMID: 36625537 DOI: 10.1021/acsami.2c20024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
An early and accurate cancer diagnosis holds the potential to improve treatment and prognosis. Nevertheless, the complexity of the biological system limits the selectivity of existing approaches and makes tumor imaging in vivo particularly challenging. In this study, tumor-specific fluorescence imaging was achieved by building intelligent dual-lock deoxyribonucleic acid automatons (IDEAs) that employed a DNA walking system standing on ZrMOF@MnO2 multifunctional nanocomposites for controllable molecular recognition. The IDEAs exhibited significantly enhanced fluorescence signals only in the coexistence of both miRNA and GSH of tumor cells, enabling accurate distinguishing of tumor cells from healthy ones. Furthermore, the feasibility and specificity of IDEAs were also validated in vivo with tumor bearing mice successfully. This work highlights the potential of the proposed IDEA strategy for tumor-specific imaging, paving the way for successful precision diagnosis and treatment.
Collapse
Affiliation(s)
- Liu Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing400044, P. R. China
| | - Kang Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing400044, P. R. China
- College of Bioengineering, Chongqing University, Chongqing400044, P. R. China
| | - Xiaohui Wang
- Department of Oncology, Jiangjin Hospital, Chongqing University, Chongqing402260, P. R. China
| | - Ruyan Niu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing400044, P. R. China
- College of Bioengineering, Chongqing University, Chongqing400044, P. R. China
| | - Xiaohui Chen
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing400044, P. R. China
- College of Bioengineering, Chongqing University, Chongqing400044, P. R. China
| | - Ying Zhu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing400044, P. R. China
| | - Zixin Sun
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing400044, P. R. China
| | - Jichun Yang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing400044, P. R. China
| | - Guoxiang Liu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing400044, P. R. China
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing400044, P. R. China
| |
Collapse
|
10
|
Dong Q, Ding Q, Yuan R, Yuan Y. AuNPs/CdS QDs/CeO 2 ternary nanocomposite coupled with scrollable three-dimensional DNA walker mediated cycling amplification for sensitive photoelectrochemical miRNA assay. Anal Chim Acta 2022; 1228:340344. [PMID: 36127010 DOI: 10.1016/j.aca.2022.340344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/15/2022]
Abstract
Herein, a novel ternary nanocomposite (AuNPs/CdS QDs/CeO2) with excellent photoelectrochemical (PEC) performance was synthesized as signal probe to construct a near-zero background biosensor for sensitive miRNA-182-5p detection, by integrating with a scrollable three-dimensional (3D) DNA walker mediated cleavage cycling amplification. Impressively, the formation and rolling of scrollable 3D DNA walker triggered by target could realize dynamic, rapid and specific digestion of hairpin DNA on electrode with the aid of Exonuclease III (Exo III), which thus exposed abundant binding sites for assembling stable DNA labeled AuNPs/CdS QDs/CeO2 nanoprobes. Thanks to the formation of type-II heterojunction (between CeO2 and CdS QDs) and Schottky junction (generated by CeO2 and AuNPs), an ideal photoelectric conversion efficiency accompanied with stunningly improved photocurrent was thus acquired for significantly improving the detection sensitivity. It turned out that the detection limit (LOD) of biosensor was ultralow (31 aM). Significantly, the proposed PEC biosensor would exhibit great potential for the composite as a splendid indicator and provide an avenue for constructing the sensing platform with excellent sensitivity and ultralow background.
Collapse
Affiliation(s)
- Qingyuan Dong
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Qiao Ding
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yali Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
11
|
Rational fabrication of a DNA walking nanomachine on graphene oxide surface for fluorescent bioassay. Biosens Bioelectron 2022; 211:114349. [DOI: 10.1016/j.bios.2022.114349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/22/2022] [Accepted: 05/05/2022] [Indexed: 12/15/2022]
|
12
|
Porubský M, Řezníčková E, Křupková S, Kryštof V, Hlaváč J. Development of fluorescent dual-FRET probe for simultaneous detection of caspase-8 and caspase-9 activities and their relative quantification. Bioorg Chem 2022; 129:106151. [DOI: 10.1016/j.bioorg.2022.106151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/24/2022] [Accepted: 09/08/2022] [Indexed: 11/27/2022]
|
13
|
Chen ZP, Yang P, Yang ZZ, Chai YQ, Yuan R, Zhuo Y, Liang WB. One-Step Digital Droplet Auto-Catalytic Nucleic Acid Amplification with High-Throughput Fluorescence Imaging and Droplet Tracking Computation. Anal Chem 2022; 94:9166-9175. [PMID: 35708271 DOI: 10.1021/acs.analchem.2c01754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Digital droplet technology has emerged as a powerful new tool for biomarker analysis. Temperature cycling, enzymes, and off-chip processes are, nevertheless, always required. Herein, we constructed a digital droplet auto-catalytic hairpin assembly (ddaCHA) microfluidic system to achieve digital quantification of single-molecule microRNA (miRNA). The designed continuous chip integrates droplet generation, incubation, and fluorescence imaging on the chip, avoiding the requirement for extra droplet re-collection and heating operations. Clearly, the digital readout was obtained by partitioning miRNA into many individual pL-sized small droplets in which the target molecule is either present ("positive") or absent ("negative"). Importantly, the suggested enzyme-free auto-catalytic hairpin assembly (aCHA) in droplets successfully mitigated the effects of the external environment and thermal cycling on droplets, and its reaction rate is significantly superior to that of traditional CHA. We got excellent sensitivity with a linear correlation from 1 pM to 10 nM and a detection limit of 0.34 pM in the fluorescence spectrum section, as well as high selectivity to other miRNAs. Furthermore, the minimum target concentration could be reduced to 10 fM based on the high-throughput tracking computation of fluorescent droplets with a self-developed Python script, and the fluorescence intensity distribution agreed well with the theoretical value, demonstrating that it is feasible to detect miRNA efficiently and accurately, which has great potential applications in clinical diagnostics and biochemical research.
Collapse
Affiliation(s)
- Zhao-Peng Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Peng Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ze-Zhou Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Wen-Bin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|