1
|
Kanemoto K, Yoshimura K, Ono K, Ding W, Ito S, Yoshikai N. Amino- and Alkoxybenziodoxoles: Facile Preparation and Use as Arynophiles. Chemistry 2024; 30:e202400894. [PMID: 38494436 DOI: 10.1002/chem.202400894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
We report here on the facile synthesis of amino- and alkoxy-λ3-iodanes supported by a benziodoxole (BX) template and their use as arynophiles. The amino- and alkoxy-BX derivatives can be readily synthesized by reacting the respective amines or alcohols with chlorobenziodoxole in the presence of a suitable base. Unlike previously known nitrogen- and oxygen-bound iodane compounds, which have primarily been employed as electrophilic group transfer agents or oxidants, the present amino- and alkoxy-BX reagents manifest themselves as nucleophilic amino and alkoxy transfer agents toward arynes. This reactivity leads to the aryne insertion into the N-I(III) or O-I(III) bond to afford ortho-amino- and ortho-alkoxy-arylbenziodoxoles, iodane compounds nontrivial to procure by existing methods. The BX group in these insertion products exhibits excellent leaving group ability, enabling diverse downstream transformations.
Collapse
Affiliation(s)
- Kazuya Kanemoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Ken Yoshimura
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Koki Ono
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Wei Ding
- College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Shingo Ito
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Naohiko Yoshikai
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
2
|
Kumar R, Dohi T, Zhdankin VV. Organohypervalent heterocycles. Chem Soc Rev 2024; 53:4786-4827. [PMID: 38545658 DOI: 10.1039/d2cs01055k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
This review summarizes the structural and synthetic aspects of heterocyclic molecules incorporating an atom of a hypervalent main-group element. The term "hypervalent" has been suggested for derivatives of main-group elements with more than eight valence electrons, and the concept of hypervalency is commonly used despite some criticism from theoretical chemists. The significantly higher thermal stability of hypervalent heterocycles compared to their acyclic analogs adds special features to their chemistry, particularly for bromine and iodine. Heterocyclic compounds of elements with double bonds are not categorized as hypervalent molecules owing to the zwitterionic nature of these bonds, resulting in the conventional 8-electron species. This review is focused on hypervalent heterocyclic derivatives of nonmetal main-group elements, such as boron, silicon, nitrogen, carbon, phosphorus, sulfur, selenium, bromine, chlorine, iodine(III) and iodine(V).
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Chemistry, J C Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, 121006, Haryana, India.
| | - Toshifumi Dohi
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Viktor V Zhdankin
- Department of Chemistry and Biochemistry, 1038 University Drive, 126 HCAMS University of Minnesota Duluth, Duluth, Minnesota 55812, USA.
| |
Collapse
|
3
|
Kikuchi J, Nakajima R, Yoshikai N. Three-component N-alkenylation of azoles with alkynes and iodine(III) electrophile: synthesis of multisubstituted N-vinylazoles. Beilstein J Org Chem 2024; 20:891-897. [PMID: 38711595 PMCID: PMC11070964 DOI: 10.3762/bjoc.20.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/11/2024] [Indexed: 05/08/2024] Open
Abstract
A stereoselective N-alkenylation of azoles with alkynes and iodine(III) electrophile is reported. The reaction between various azoles and internal alkynes is mediated by benziodoxole triflate as the electrophile in a trans-fashion, affording azole-bearing vinylbenziodoxoles in moderate to good yields. The tolerable azole nuclei include pyrazole, indazole, 1,2,3-triazole, benzotriazole, and tetrazole. The iodanyl group in the product can be leveraged as a versatile synthetic handle, allowing for the preparation of hitherto inaccessible types of densely functionalized N-vinylazoles.
Collapse
Affiliation(s)
- Jun Kikuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Roi Nakajima
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Naohiko Yoshikai
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
4
|
Doobary S, Di Tommaso EM, Postole A, Inge AK, Olofsson B. Structure-reactivity analysis of novel hypervalent iodine reagents in S-vinylation of thiols. Front Chem 2024; 12:1376948. [PMID: 38487782 PMCID: PMC10937425 DOI: 10.3389/fchem.2024.1376948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
The transition-metal free S-vinylation of thiophenols by vinylbenziodoxolones (VBX) constituted an important step forward in hypervalent iodine-mediated vinylations, highlighting the difference to vinyliodonium salts and that the reaction outcome was influenced by the substitution pattern of the benziodoxolone core. In this study, we report several new classes of hypervalent iodine vinylation reagents; vinylbenziodazolones, vinylbenziodoxolonimine and vinyliodoxathiole dioxides. Their synthesis, structural and electronic properties are described and correlated to the S-vinylation outcome, shedding light on some interesting facets of these reagents.
Collapse
Affiliation(s)
- Sayad Doobary
- Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| | | | - Alexandru Postole
- Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| | - A. Ken Inge
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Berit Olofsson
- Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| |
Collapse
|
5
|
Arakawa C, Kanemoto K, Nakai K, Wang C, Morohashi S, Kwon E, Ito S, Yoshikai N. Carboiodanation of Arynes: Organoiodine(III) Compounds as Nucleophilic Organometalloids. J Am Chem Soc 2024; 146:3910-3919. [PMID: 38315817 DOI: 10.1021/jacs.3c11524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Organic iodine(III) compounds represent the most widely used hypervalent halogen compounds in organic synthesis, where they typically perform the role of an electrophile or oxidant to functionalize electron-rich or -nucleophilic organic compounds. In contrast to this convention, we discovered their unique reactivity as organometallic-like nucleophiles toward arynes. Equipped with diverse transferable ligands and supported by a tethered spectator ligand, the organoiodine(III) compounds undergo addition across the electrophilic C-C triple bond of arynes while retaining the trivalency of the iodine center. This carboiodanation reaction can forge a variety of aryl-alkynyl, aryl-alkenyl, and aryl-(hetero)aryl bonds along with the concurrent formation of an aryl-iodine(III) bond under mild conditions. The newly formed aryl-iodine(III) bond serves as a versatile linchpin for downstream transformations, particularly as an electrophilic reaction site. The amphoteric nature of the iodine(III) group as a metalloid and a leaving group in this sequence enables the flexible and expedient synthesis of extended π-conjugated molecules and privileged biarylphosphine ligands, where all of the iodine(III)-containing compounds can be handled as air- and thermally stable materials.
Collapse
Affiliation(s)
- Chisaki Arakawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Kazuya Kanemoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Katsuya Nakai
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Chen Wang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemical Process, Shaoxing University, Shaoxing 312000, People's Republic of China
| | - Shunya Morohashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Eunsang Kwon
- Endowed Research Laboratory of Dimensional Integrated Nanomaterials, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Shingo Ito
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Naohiko Yoshikai
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
6
|
Kaplan JA, Blum SA. Iodination-Group-Transfer Reactions to Generate Trisubstituted Iodoalkenes with Regio- and Stereochemical Control. J Org Chem 2023; 88:13236-13247. [PMID: 37656489 DOI: 10.1021/acs.joc.3c01495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The regio- and stereodefined synthesis of trisubstituted alkenes remains a significant synthetic challenge. Herein, a method is developed for producing regio- and stereodefined trisubstituted iodoalkenes by diverting intermediates from an iodination-electrophilic-cyclization mechanism. Specifically, cyclized sulfonium ion-pair intermediates are diverted to alkenes by ring-opening with nucleophilic iodide. Alternatively, scavenging of the iodide by AgOTf prevents ring-opening, enabling isolation of the sulfonium ion-pair intermediate. Isolation of the ion pair enables access to complementary reactivity, including ring-opening by alternative nucleophiles (i.e., amines), yielding trisubstituted acyclic alkenes and an example acyclic tetrasubstituted alkene. X-ray crystallographic determination of reaction intermediates and products confirms that the initial electrophilic-cyclization step sets the stereo- and regiochemistry of the product. The products serve as synthetic building blocks by readily participating in downstream functionalization reactions, including oxidation, palladium-catalyzed cross-coupling, and nucleophilic displacement.
Collapse
Affiliation(s)
- Joseph A Kaplan
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Suzanne A Blum
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
7
|
Chen ME, Gan ZY, Hu YH, Zhang FM. Tandem Oxidative Ritter Reaction/Hydration/Aldol Condensation of α-Arylketones with Propiolonitriles for the Construction of 3-Acyl-3-pyrrolin-2-ones. J Org Chem 2023; 88:3954-3964. [PMID: 36881939 DOI: 10.1021/acs.joc.2c02935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
A novel tandem oxidative Ritter reaction/hydration/aldol condensation of α-arylketones with substituted propiolonitriles has been developed. This protocol conveniently affords a wide range of functionalized 3-acyl-3-pyrrolin-2-ones through the efficient construction of four chemical bonds, a C-N bond, a C═C bond, and two C═O bonds, and the formation of one ring bearing an aza-quaternary center, which is ascribed to the strategical introduction of functionalized nitriles to this transformation. A reaction mechanism was proposed based on some control experiments.
Collapse
Affiliation(s)
- Meng-En Chen
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zhang-Yan Gan
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yue-Hong Hu
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
8
|
Mironova IA, Noskov DM, Yoshimura A, Yusubov MS, Zhdankin VV. Aryl-, Akynyl-, and Alkenylbenziodoxoles: Synthesis and Synthetic Applications. Molecules 2023; 28:2136. [PMID: 36903382 PMCID: PMC10004369 DOI: 10.3390/molecules28052136] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Hypervalent iodine reagents are in high current demand due to their exceptional reactivity in oxidative transformations, as well as in diverse umpolung functionalization reactions. Cyclic hypervalent iodine compounds, known under the general name of benziodoxoles, possess improved thermal stability and synthetic versatility in comparison with their acyclic analogs. Aryl-, alkenyl-, and alkynylbenziodoxoles have recently received wide synthetic applications as efficient reagents for direct arylation, alkenylation, and alkynylation under mild reaction conditions, including transition metal-free conditions as well as photoredox and transition metal catalysis. Using these reagents, a plethora of valuable, hard-to-reach, and structurally diverse complex products can be synthesized by convenient procedures. The review covers the main aspects of the chemistry of benziodoxole-based aryl-, alkynyl-, and alkenyl- transfer reagents, including preparation and synthetic applications.
Collapse
Affiliation(s)
- Irina A. Mironova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Dmitrii M. Noskov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Akira Yoshimura
- Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Mekhman S. Yusubov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Viktor V. Zhdankin
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA
| |
Collapse
|
9
|
Li H, Yang C, Wang D, Deng L. Cobalt-Catalyzed Regio- and Stereoselective Hydrosilylation of Alk-2-ynes with Tertiary Silanes. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Hongfang Li
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chengbo Yang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dongyang Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Liang Deng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
10
|
Yoshikai N. Exploring New Reactions and Syntheses of Trivalent Iodine Compounds. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.1011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Kikuchi J, Maesaki K, Sasaki S, Wang W, Ito S, Yoshikai N. Stereoselective Synthesis of β-Alkoxy-β-amido Vinylbenziodoxoles via Iodo(III)etherification of Ynamides. Org Lett 2022; 24:6914-6918. [PMID: 36125122 DOI: 10.1021/acs.orglett.2c02570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A trans-iodo(III)etherification reaction of ynamides with benziodoxole triflate and alcohols is reported. Despite the sensitivity of ynamides and enamides toward Brønsted acid, the reaction could be successfully performed under carefully controlled conditions to afford β-alkoxy-β-amido vinylbenziodoxoles in moderate to good yields. The products could be subjected to a sequence of cross-coupling via C-I(III) bond cleavage and electrophilic halogenation of the resulting α-alkoxyenamides, allowing for the preparation of densely functionalized esters.
Collapse
Affiliation(s)
- Jun Kikuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Kaito Maesaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Shuma Sasaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Weifan Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Shingo Ito
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Naohiko Yoshikai
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
12
|
Motornov V, Beier P. One-pot synthesis of 4-substituted 2-fluoroalkyloxazoles from NH-1,2,3-triazoles and fluoroalkylated acid anhydrides. NEW J CHEM 2022. [DOI: 10.1039/d2nj02461f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient one-pot method for the synthesis of 2-fluoroalkyloxazoles from 4-substituted NH-1,2,3-triazoles, fluorinated anhydrides and triethylamine was developed.
Collapse
Affiliation(s)
- Vladimir Motornov
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10, Praha, Czech Republic
| | - Petr Beier
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10, Praha, Czech Republic
| |
Collapse
|
13
|
Wang CS, Tan PSL, Ding W, Ito S, Yoshikai N. Regio- and Stereoselective Synthesis of Enol Carboxylate, Phosphate, and Sulfonate Esters via Iodo(III)functionalization of Alkynes. Org Lett 2021; 24:430-434. [PMID: 34962817 DOI: 10.1021/acs.orglett.1c04123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
β-Iodo(III)enol carboxylates, phosphates, and tosylates can be efficiently synthesized through regio- and stereoselective iodo(III)functionalization of alkynes. The combination of chlorobenziodoxole and silver salt has proven to generate a versatile cationic iodine(III) electrophile to activate alkynes and engage various carboxylic acids, triethyl phosphate, and p-toluenesulfonic acid as nucleophiles. The β-iodo(III)enol esters serve as starting materials for the synthesis of multisubstituted alkenes through sequential cross-coupling of the C-I(III) and C-O bonds.
Collapse
Affiliation(s)
- Chang-Sheng Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Ploypailin Siew Ling Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Wei Ding
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Shingo Ito
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Naohiko Yoshikai
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.,Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|