1
|
Tong H, Odutola J, Song J, Peng L, Tkachenko N, Antonietti M, Pelicano CM. Boosting the Quantum Efficiency of Ionic Carbon Nitrides in Photocatalytic H 2O 2 Evolution via Controllable n → π* Electronic Transition Activation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412753. [PMID: 39420669 PMCID: PMC11619226 DOI: 10.1002/adma.202412753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Hydrogen peroxide (H2O2) is a crucial chemical used in numerous industrial applications, yet its manufacturing relies on the energy-demanding anthraquinone process. Solar-driven synthesis of H2O2 is gaining traction as a promising research area, providing a sustainable method for its production. Herein, a controllable activation of n → π* electronic transition is presented to boost the photocatalytic H2O2 evolution in ionic carbon nitrides. This enhancement is achieved through the simultaneous introduction of structural distortions and defect sites (─C ≡ N groups and N vacancies) into the KPHI framework. The optimal catalyst (2%Ox-KPHI) reached an apparent quantum yield of 41% at 410 nm without the need for any cocatalysts, outperforming most previously reported carbon nitride-based photocatalysts. Extensive experimental characterizations and theoretical calculations confirm that a corrugated configuration and the presence of defects significantly broaden the light absorption profile, improve carrier separation and migration, promote O2 adsorption, and lower the energy barriers for H2O2 desorption. Transient absorption spectroscopy indicates that the enhanced photocatalytic performance of 2%Ox-KPHI is largely attributed to the preferential migration of electrons at defect sites over extended timescales, following the diffusion of geminate carriers across the PHI sheets.
Collapse
Affiliation(s)
- Haijian Tong
- Department of Colloid ChemistryMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Jokotadeola Odutola
- Chemistry and Advanced MaterialsFaculty of Engineering and Natural SciencesTampere UniversityTampere33101Finland
| | - Junsheng Song
- Department of Colloid ChemistryMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Lu Peng
- Department of Colloid ChemistryMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Nikolai Tkachenko
- Chemistry and Advanced MaterialsFaculty of Engineering and Natural SciencesTampere UniversityTampere33101Finland
| | - Markus Antonietti
- Department of Colloid ChemistryMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Christian Mark Pelicano
- Department of Colloid ChemistryMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| |
Collapse
|
2
|
Higashi T, Domen K. Interfacial Design of Particulate Photocatalyst Materials for Green Hydrogen Production. CHEMSUSCHEM 2024; 17:e202400663. [PMID: 38794839 DOI: 10.1002/cssc.202400663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 05/26/2024]
Abstract
Green hydrogen production using particulate photocatalyst materials has attracted much attention in recent years because this process could potentially lead to inexpensive and scalable solar-to-chemical energy conversion systems. Although the development of efficient particulate photocatalysts enabling one-step overall water splitting (OWS) with solar-to-hydrogen efficiencies in excess of 10 % remains challenging, promising photocatalyst candidates exhibiting OWS activity have been demonstrated. This review provides a comprehensive introduction to the solar-to-hydrogen energy conversion process of semiconductor photocatalyst materials and highlights recent advances in photocatalytic OWS via both one-step and two-step photoexcitation processes. The review also covers recent developments in the photocatalytic OWS of SrTiO3, including the establishment of large-scale photocatalytic systems, interfacial design using cocatalysts to enhance water splitting activity, and its photoelectrochemical (PEC) properties at the electrified solid/liquid interface. In addition, there is a special focus on visible-light-absorbing oxynitride and oxysulfide particulate photocatalysts with absorption edges near 600 nm. Methods for photocatalyst preparation and surface modification, as well as PEC properties, are also discussed. The semiconductor properties of particulate photocatalysts obtained from photoelectroanalytical evaluations using particulate photoelectrodes are evaluated. This review is intended to provide guidelines for the future development of particulate photocatalysts capable of efficient and stable OWS.
Collapse
Affiliation(s)
- Tomohiro Higashi
- Institute for Tenure Track Promotion, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki, 889-2192, Japan
| | - Kazunari Domen
- Office of University Professors, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8656, Japan
- Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 4-17-1 Wakasato, Nagano, 380-8533, Japan
- Department of Chemistry, Kyung Hee University, Seoul, 130-701, Republic of, Korea
| |
Collapse
|
3
|
Liu D, Kuang Y. Particle-Based Photoelectrodes for PEC Water Splitting: Concepts and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311692. [PMID: 38619834 DOI: 10.1002/adma.202311692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/06/2024] [Indexed: 04/16/2024]
Abstract
This comprehensive review delves into the intricacies of the photoelectrochemical (PEC) water splitting process, specifically focusing on the design, fabrication, and optimization of particle-based photoelectrodes for efficient green hydrogen production. These photoelectrodes, composed of semiconductor materials, potentially harness light energy and generate charge carriers, driving water oxidation and reduction reactions. The versatility of particle-based photoelectrodes as a platform for investigating and enhancing various semiconductor candidates is explored, particularly the emerging complex oxides with compelling charge transfer properties. However, the challenges presented by many factors influencing the performance and stability of these photoelectrodes, including particle size, shape, composition, morphology, surface modification, and electrode configuration, are highlighted. The review introduces the fundamental principles of semiconductor photoelectrodes for PEC water splitting, presents an exhaustive overview of different synthesis methods for semiconductor powders and their assembly into photoelectrodes, and discusses recent advances and challenges in photoelectrode material development. It concludes by offering promising strategies for improving photoelectrode performance and stability, such as the adoption of novel architectures and heterojunctions.
Collapse
Affiliation(s)
- Deyu Liu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
| | - Yongbo Kuang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19(A)Yuquan Road, Beijing, 100049, China
| |
Collapse
|
4
|
Chandran B, Oh JK, Lee SW, Um DY, Kim SU, Veeramuthu V, Park JS, Han S, Lee CR, Ra YH. Solar-Driven Sustainability: III-V Semiconductor for Green Energy Production Technologies. NANO-MICRO LETTERS 2024; 16:244. [PMID: 38990425 PMCID: PMC11239647 DOI: 10.1007/s40820-024-01412-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/07/2024] [Indexed: 07/12/2024]
Abstract
Long-term societal prosperity depends on addressing the world's energy and environmental problems, and photocatalysis has emerged as a viable remedy. Improving the efficiency of photocatalytic processes is fundamentally achieved by optimizing the effective utilization of solar energy and enhancing the efficient separation of photogenerated charges. It has been demonstrated that the fabrication of III-V semiconductor-based photocatalysts is effective in increasing solar light absorption, long-term stability, large-scale production and promoting charge transfer. This focused review explores on the current developments in III-V semiconductor materials for solar-powered photocatalytic systems. The review explores on various subjects, including the advancement of III-V semiconductors, photocatalytic mechanisms, and their uses in H2 conversion, CO2 reduction, environmental remediation, and photocatalytic oxidation and reduction reactions. In order to design heterostructures, the review delves into basic concepts including solar light absorption and effective charge separation. It also highlights significant advancements in green energy systems for water splitting, emphasizing the significance of establishing eco-friendly systems for CO2 reduction and hydrogen production. The main purpose is to produce hydrogen through sustainable and ecologically friendly energy conversion. The review intends to foster the development of greener and more sustainable energy source by encouraging researchers and developers to focus on practical applications and advancements in solar-powered photocatalysis.
Collapse
Affiliation(s)
- Bagavath Chandran
- Division of Advanced Materials Engineering, Engineering College, Research Center for Advanced Materials Development (RCAMD), Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jeong-Kyun Oh
- Division of Advanced Materials Engineering, Engineering College, Research Center for Advanced Materials Development (RCAMD), Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sang-Wook Lee
- Division of Advanced Materials Engineering, Engineering College, Research Center for Advanced Materials Development (RCAMD), Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Dae-Young Um
- Division of Advanced Materials Engineering, Engineering College, Research Center for Advanced Materials Development (RCAMD), Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sung-Un Kim
- Division of Advanced Materials Engineering, Engineering College, Research Center for Advanced Materials Development (RCAMD), Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Vignesh Veeramuthu
- Division of Advanced Materials Engineering, Engineering College, Research Center for Advanced Materials Development (RCAMD), Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jin-Seo Park
- Division of Advanced Materials Engineering, Engineering College, Research Center for Advanced Materials Development (RCAMD), Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Shuo Han
- Division of Advanced Materials Engineering, Engineering College, Research Center for Advanced Materials Development (RCAMD), Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Cheul-Ro Lee
- Division of Advanced Materials Engineering, Engineering College, Research Center for Advanced Materials Development (RCAMD), Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Yong-Ho Ra
- Division of Advanced Materials Engineering, Engineering College, Research Center for Advanced Materials Development (RCAMD), Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
5
|
Pelicano CM, Antonietti M. Metal Poly(heptazine imides) as Multifunctional Photocatalysts for Solar Fuel Production. Angew Chem Int Ed Engl 2024; 63:e202406290. [PMID: 38687031 DOI: 10.1002/anie.202406290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
Solar-driven photocatalysis employing particulate semiconductors represents a promising approach for sustainable production of valuable chemical feedstock. Metal poly(heptazine imide) (MPHI), a novel 2D ionic carbon nitride, has been recognized as an emerging photocatalyst with distinctive properties. In this minireview, we first delineate the forefront innovations of MPHI photocatalysts, spanning from synthetic strategies and solving structures to the exploration of novel properties. We place special emphasis on the structural design principles aimed at developing high-performance MPHI systems toward photocatalytic solar fuel production such as H2 evolution, H2O oxidation, H2O2 production and CO2 reduction. Finally, we discuss crucial insights and challenges in leveraging highly active MPHIs for efficient solar-to-chemical energy conversion.
Collapse
Affiliation(s)
- Christian Mark Pelicano
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Potsdam, 14476, Germany
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Potsdam, 14476, Germany
| |
Collapse
|
6
|
Higashi T, Seki K, Nandal V, Pihosh Y, Nakabayashi M, Shibata N, Domen K. Understanding the Activation Mechanism of RhCrO x Cocatalysts for Hydrogen Evolution with Nanoparticulate Electrodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26325-26339. [PMID: 38716494 DOI: 10.1021/acsami.4c04841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Mixed oxides of Rh-Cr (RhCrOx), containing Rh3+ and Cr3+ cations, are commonly used as cocatalysts for the hydrogen evolution reaction (HER) on particulate photocatalysts. The precise physicochemical mechanisms of the HER at the catalytic sites of these oxides are not well understood. In this study, model cocatalyst electrodes, composed of nanoparticulate RhCrOx, were fabricated to investigate the physicochemical mechanisms of the HER. Electroanalytical and X-ray photoelectron spectroscopic measurements revealed that nanoparticulate RhCrOx produces reduced Rh (Rh0) species by maintaining an electrode potential more negative than 0.03 V versus the reversible hydrogen electrode (VRHE). This results in significant enhancement of the HER activity. The catalytic activity for the HER stems from the reduced Rh species, and the inclusion of Cr3+ (CrOx) aided in the electron transfer process at the solid/liquid interface, resulting in a higher current density during the HER. To achieve a solar-to-hydrogen efficiency of over 3%, the conduction band minimum of the particulate photocatalyst should be positioned more negatively than -0.10 VRHE. Moreover, the formation of electron trap states at potentials more positive than 0.03 VRHE should be avoided. This study highlights the importance of understanding the catalytic sites on metal oxide cocatalysts. Moreover, it offers a design strategy for enhancing the efficiency of photocatalytic water splitting.
Collapse
Affiliation(s)
- Tomohiro Higashi
- Institute for Tenure Track Promotion, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192, Japan
| | - Kazuhiko Seki
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Vikas Nandal
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Yuriy Pihosh
- Office of University Professors, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mamiko Nakabayashi
- Institute of Engineering Innovation, School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Naoya Shibata
- Institute of Engineering Innovation, School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazunari Domen
- Office of University Professors, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan
- Research Initiative for Supra-Materials (RISM), Shinshu University, 4-17-1 Wakasato, Nagano 380-8533, Japan
| |
Collapse
|
7
|
Shao M, Shao Y, Pan H. Progress on enhancing the charge separation efficiency of carbon nitride for robust photocatalytic H 2 production. Phys Chem Chem Phys 2024; 26:11243-11262. [PMID: 38567551 DOI: 10.1039/d3cp06333j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Solar-driven H2 production from water splitting with efficient photocatalysts is a sustainable strategy to meet the clean energy demand and alleviate the approaching environmental issues caused by fossil fuel consumption. Among various semiconductor-based photocatalysts, graphitic carbon nitride (g-C3N4) has attracted much attention due to its advantages of long term-stability, visible light response, low cost, and easy preparation. However, the intrinsic Coulombic attraction between charge carriers and the interlayer electrostatic barrier of bulk g-C3N4 result in severe charge recombination and low charge separation efficiency. This perspective summarizes the recent progress in the development of g-C3N4 photocatalytic systems, and focuses on three main modification strategies for promoting charge transfer and minimizing charge recombination, including structural modulation, heterojunction construction, and cocatalyst loading. Based on this progress, we provide conclusions regarding the current challenges of further improving photocatalytic efficiency to fulfill commercial requirements, and propose some recommendations for the design of novel and satisfactory g-C3N4 photocatalysts, which is expected to progress the solar-to-hydrogen conversion.
Collapse
Affiliation(s)
- Mengmeng Shao
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Yangfan Shao
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China.
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao 999078, China
| |
Collapse
|
8
|
Gao M, Huang Z, Wang L, Li H, Ruan C, Sadeq R, Taylor Isimjan T, Yang X. Synergistic Co-N/V-N dual sites in N-doped Co 3V 2O 8 nanosheets: pioneering high-efficiency bifunctional electrolysis for high-current water splitting. J Colloid Interface Sci 2024; 658:739-747. [PMID: 38142624 DOI: 10.1016/j.jcis.2023.12.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023]
Abstract
Developing affluent dual-metal active sites bifunctional electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is essential to achieve large-scale water electrolysis, whereas still remains challenging. Herein, a novel nitrogen-doped cobalt-vanadium oxide with abundant Co-N and V-N dual active sites supported on nickel foam (N-Co3V2O8@NF) is constructed by a controllable impregnation-thermal nitridation strategy. The staggered nanosheet structure ensures optimal exposure of active sites. More importantly, N doping effectively regulates the electronic structure of the metal centers and induces the formation of Co-N and V-N dual active sites, which is conducive to improving the conductivity and hydrophilicity, thus synergistically enhancing the electrocatalytic efficiency. Consequently, the optimized N-Co3V2O8@NF exhibits prominent HER (63 mV@10 mA cm-2) and OER (256 mV@10 mA cm-2) activities, surpassing most contemporary bifunctional electrocatalysts. In practical application, the assembled N-Co3V2O8@NF(+/-) electrolyzer consistently achieved ultra-low cell voltages of 1.97 and 2.03 V at 500 and 1000 mA cm-2, respectively, superior to the benchmark RuO2@NF(+) || Pt/C@NF(-) and showcasing robust durability. This paves the way for its prospective adoption in industrial water electrolysis applications.
Collapse
Affiliation(s)
- Mingcheng Gao
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Zhiyang Huang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Lixia Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Huatong Li
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Changping Ruan
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Raeid Sadeq
- Saudi Arabia Basic Industries Corporation (SABIC) at King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Tayirjan Taylor Isimjan
- Saudi Arabia Basic Industries Corporation (SABIC) at King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Xiulin Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
9
|
Wang S, Feng S, Liu B, Gong Z, Wang T, Gong J. An integrated n-Si/BiVO 4 photoelectrode with an interfacial bi-layer for unassisted solar water splitting. Chem Sci 2023; 14:2192-2199. [PMID: 36845941 PMCID: PMC9945263 DOI: 10.1039/d2sc06651c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/29/2023] [Indexed: 01/31/2023] Open
Abstract
Integrated n-Si/BiVO4 is one of the most promising candidates for unbiased photoelectrochemical water splitting. However, a direct connection between n-Si and BiVO4 will not attain overall water splitting due to the small band offset as well as the interfacial defects at the n-Si/BiVO4 interface that severely impede carrier separation and transport, limiting the photovoltage generation. This paper describes the design and fabrication of an integrated n-Si/BiVO4 device with enhanced photovoltage extracted from the interfacial bi-layer for unassisted water splitting. An Al2O3/indium tin oxide (ITO) interfacial bi-layer was inserted at the n-Si/BiVO4 interface, which promotes the interfacial carrier transport by enlarging the band offset while healing interfacial defects. When coupled to a separate cathode for hydrogen evolution, spontaneous water splitting could be realized with this n-Si/Al2O3/ITO/BiVO4 tandem anode, with an average solar-to-hydrogen (STH) efficiency of 0.62% for over 1000 hours.
Collapse
Affiliation(s)
- Shujie Wang
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Shijia Feng
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Bin Liu
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Zichen Gong
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Tuo Wang
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University, Binhai New City Fuzhou 350207 China
- National Industry-Education Platform of Energy Storage Tianjin 300350 China
| | - Jinlong Gong
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
- National Industry-Education Platform of Energy Storage Tianjin 300350 China
| |
Collapse
|
10
|
Higashi T, Seki K, Sasaki Y, Pihosh Y, Nandal V, Nakabayashi M, Shibata N, Domen K. Mechanistic Insights into Enhanced Hydrogen Evolution of CrO x /Rh Nanoparticles for Photocatalytic Water Splitting. Chemistry 2023; 29:e202204058. [PMID: 36764932 DOI: 10.1002/chem.202204058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/12/2023]
Abstract
The hydrogen evolution reaction (HER) of Rh nanoparticles (RhNP) coated with an ultrathin layer of Cr-oxides (CrOx ) was investigated as a model electrode for the Cr2 O3 /Rh-metal core-shell-type cocatalyst system for photocatalytic water splitting. The CrOx layer was electrodeposited over RhNP on a transparent conductive fluorine-doped tin oxide (FTO) substrate. The CrOx layer on RhNP facilitates the electron transfer process at the CrOx /RhNP interface, leading to the increased current density for the HER. Impedance spectroscopic analysis revealed that the CrOx layer transferred protons via the hopping mechanism to the RhNP surface for HER. In addition, CrOx restricted electron transfer from the FTO to the electrolyte and/or RhNP and suppressed the backward reaction by limiting oxygen migration. This study clarifies the crucial role of the ultrathin CrOx layer on nanoparticulate cocatalysts and provides a cocatalyst design strategy for realizing efficient photocatalytic water splitting.
Collapse
Affiliation(s)
- Tomohiro Higashi
- Institute for Tenure Track Promotion, University of Miyazaki, Nishi 1-1 Gakuen-Kibanadai, Miyazaki, 889-2192, Japan
| | - Kazuhiko Seki
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 16-1 Onogawa, Ibaraki, 305-8569, Japan
| | - Yutaka Sasaki
- Office of University Professors, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yuriy Pihosh
- Office of University Professors, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Vikas Nandal
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 16-1 Onogawa, Ibaraki, 305-8569, Japan
| | - Mamiko Nakabayashi
- Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Naoya Shibata
- Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazunari Domen
- Office of University Professors, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8656, Japan
- Research Initiative for Supra-Materials (RISM), Shinshu University, 4-17-1 Wakasato, Nagano, 380-8533, Japan
| |
Collapse
|
11
|
Luo Z, Peng Q, Huang Z, Wang L, Yang Y, Dong J, Isimjan TT, Yang X. Fine-tune d-band center of cobalt vanadium oxide nanosheets by N-doping as a robust overall water splitting electrocatalyst. J Colloid Interface Sci 2023; 629:111-120. [PMID: 36152569 DOI: 10.1016/j.jcis.2022.09.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022]
Abstract
Developing high-activity, long-durability, and noble metal-free oxygen evolution (OER) and hydrogen evolution (HER) cocatalysts are the bottlenecks for efficient overall water splitting (OWS). Here, novel cobalt vanadium oxides doped by nitrogen were synthesized by nitriding Co2V2O7@NF precursor at 300-450 °C for OER and HER reactions. N-Co2V2O7@NF (350 °C) and N-Co2VO4/VO2@NF (400 °C) show remarkable OER and HER performance with overpotentials of 310 mV and 224 mV at high current density (100 mA cm-2). Besides, they also revealed long-term solid stability even after 170 h and 700 h of continuous performance. Furthermore, the N-Co2V2O7@NF(+)||N-Co2VO4/VO2@NF(-) OWS device possesses a cell voltage of 1.93 V at 500 mA cm-2 better than RuO2@NF(+)||Pt/C@NF(-) (2.02 V) and can operate for 60 h with almost no degradation. This extraordinary performance can be attributed to the nanosheet structure, which can maximize the exposure of active sites and accelerate the mass transfer. Moreover, density functional theory (DFT) calculations suggest that N-doping can fine-tune the d-band center and band gap to facilitate intermediate adsorption and electron motion. The method presented here can be applied in other novel N-doped electrocatalysts for the energy field.
Collapse
Affiliation(s)
- Zuyang Luo
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Qimin Peng
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Zhiyang Huang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Lixia Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Yuting Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Jiaxin Dong
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, Guangxi, China.
| | - Tayirjan Taylor Isimjan
- Saudi Arabia Basic Industries Corporation (SABIC) at King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Xiulin Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, Guangxi, China.
| |
Collapse
|
12
|
Recent advances in understanding and design of efficient hydrogen evolution electrocatalysts for water splitting: A comprehensive review. Adv Colloid Interface Sci 2023; 311:102811. [PMID: 36436436 DOI: 10.1016/j.cis.2022.102811] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/10/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022]
Abstract
An unsustainable reliance on fossil fuels is the primary cause of the vast majority of greenhouse gas emissions, which in turn lead to climate change. Green hydrogen (H2), which may be generated by electrolyzing water with renewable power sources, is a possible substitute for fossil fuels. On the other hand, the increasing intricacy of hydrogen evolution electrocatalysts that are presently being explored makes it more challenging to integrate catalytic theories, catalytic fabrication procedures, and characterization techniques. This review will initially present the thermodynamics, kinetics, and associated electrical and structural characteristics for HER electrocatalysts before highlighting design approaches for the electrocatalysts. Secondly, an in-depth discussion regarding the rational design, synthesis, mechanistic insight, and performance improvement of electrocatalysts is centered on both the intrinsic and extrinsic influences. Thirdly, the most recent technological advances in electrocatalytic water-splitting approaches are described. Finally, the difficulties and possibilities associated with generating extremely effective HER electrocatalysts for water-splitting applications are discussed.
Collapse
|
13
|
Heterojunction Design between WSe2 Nanosheets and TiO2 for Efficient Photocatalytic Hydrogen Generation. Catalysts 2022. [DOI: 10.3390/catal12121668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Design and fabrication of efficient and stable photocatalysts are critically required for practical applications of solar water splitting. Herein, a series of WSe2/TiO2 nanocomposites were constructed through a facile mechanical grinding method, and all of the nanocomposites exhibited boosted photocatalytic hydrogen evolution. It was discovered that the enhanced photocatalytic performance was attributed to the efficient electron transfer from TiO2 to WSe2 and the abundant active sites provided by WSe2 nanosheets. Moreover, the intimate heterojunction between WSe2 nanosheets and TiO2 favors the interfacial charge separation. As a result, a highest hydrogen evolution rate of 2.28 mmol/g·h, 114 times higher than pristine TiO2, was obtained when the weight ratio of WSe2/(WSe2 + TiO2) was adjusted to be 20%. The designed WSe2/TiO2 heterojunctions can be regarded as a promising photocatalysts for high-throughput hydrogen production.
Collapse
|
14
|
Navalón S, Dhakshinamoorthy A, Álvaro M, Ferrer B, García H. Metal-Organic Frameworks as Photocatalysts for Solar-Driven Overall Water Splitting. Chem Rev 2022; 123:445-490. [PMID: 36503233 PMCID: PMC9837824 DOI: 10.1021/acs.chemrev.2c00460] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal-organic frameworks (MOFs) have been frequently used as photocatalysts for the hydrogen evolution reaction (HER) using sacrificial agents with UV-vis or visible light irradiation. The aim of the present review is to summarize the use of MOFs as solar-driven photocatalysts targeting to overcome the current efficiency limitations in overall water splitting (OWS). Initially, the fundamentals of the photocatalytic OWS under solar irradiation are presented. Then, the different strategies that can be implemented on MOFs to adapt them for solar photocatalysis for OWS are discussed in detail. Later, the most active MOFs reported until now for the solar-driven HER and/or oxygen evolution reaction (OER) are critically commented. These studies are taken as precedents for the discussion of the existing studies on the use of MOFs as photocatalysts for the OWS under visible or sunlight irradiation. The requirements to be met to use MOFs at large scale for the solar-driven OWS are also discussed. The last section of this review provides a summary of the current state of the field and comments on future prospects that could bring MOFs closer to commercial application.
Collapse
Affiliation(s)
- Sergio Navalón
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia46022, Spain,S.N.: email,
| | - Amarajothi Dhakshinamoorthy
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia46022, Spain,School
of Chemistry, Madurai Kamaraj University, Palkalai Nagar, Madurai625021, Tamil
NaduIndia,A.D.: email,
| | - Mercedes Álvaro
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia46022, Spain
| | - Belén Ferrer
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia46022, Spain
| | - Hermenegildo García
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia46022, Spain,Instituto
Universitario de Tecnología Química, CSIC-UPV, Universitat Politècnica de València, Avenida de los Naranjos, Valencia46022, Spain,H.G.:
email,
| |
Collapse
|