1
|
Bowskill DH, Tan BI, Keates A, Sugden IJ, Adjiman CS, Pantelides CC. Large-Scale Parameter Estimation for Crystal Structure Prediction. Part 1: Dataset, Methodology, and Implementation. J Chem Theory Comput 2024. [PMID: 39531362 DOI: 10.1021/acs.jctc.4c01091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Crystal structure prediction (CSP) seeks to identify all thermodynamically accessible solid forms of a given compound and, crucially, to establish the relative thermodynamic stability between different polymorphs. The conventional hierarchical CSP workflow suggests that no single energy model can fulfill the needs of all stages in the workflow, and energy models across a spectrum of fidelities and computational costs are required. Hybrid ab initio/empirical force-field (HAIEFF) models have demonstrated a good balance of these two factors, but the force-field component presents a major bottleneck for model accuracy. Existing parameter estimation tools for fitting this empirical component are inefficient and have severe limitations on the manageable problem size. This, combined with a lack of reliable reference data for parameter fitting, has resulted in development in the force-field component of HAIEFF models having mostly stagnated. In this work, we address these barriers to progress. First, we introduce a curated database of 755 organic crystal structures, obtained using high quality, solid-state DFT-D calculations, which provide a complete set of geometry and energy data. Comparisons to various theoretical and experimental data sources indicate that this database provides suitable diversity for parameter fitting. In tandem, we also put forward a new parameter estimation algorithm implemented as the CrystalEstimator program. Our tests demonstrate that CrystalEstimator is capable of efficiently handling large-scale parameter estimation problems, simultaneously fitting as many as 62 model parameters based on data from 445 structures. This problem size far exceeds any previously reported works related to CSP force-field parametrization. These developments form a strong foundation for all future work involving parameter estimation of transferable or tailor-made force-fields for HAIEFF models. This ultimately opens the way for significant improvements in the accuracy achieved by the HAIEFF models.
Collapse
Affiliation(s)
- D H Bowskill
- Department of Chemical Engineering, Sargent Centre for Process Systems Engineering and Institute for Molecular Science and Engineering, Imperial College London, London SW7 2AZ, U.K
| | - B I Tan
- Department of Chemical Engineering, Sargent Centre for Process Systems Engineering and Institute for Molecular Science and Engineering, Imperial College London, London SW7 2AZ, U.K
| | - A Keates
- Process Studies Group, Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, U.K
| | - I J Sugden
- Department of Chemical Engineering, Sargent Centre for Process Systems Engineering and Institute for Molecular Science and Engineering, Imperial College London, London SW7 2AZ, U.K
| | - C S Adjiman
- Department of Chemical Engineering, Sargent Centre for Process Systems Engineering and Institute for Molecular Science and Engineering, Imperial College London, London SW7 2AZ, U.K
| | - C C Pantelides
- Department of Chemical Engineering, Sargent Centre for Process Systems Engineering and Institute for Molecular Science and Engineering, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
2
|
Galanakis N, Tuckerman ME. Rapid prediction of molecular crystal structures using simple topological and physical descriptors. Nat Commun 2024; 15:9757. [PMID: 39528448 PMCID: PMC11555391 DOI: 10.1038/s41467-024-53596-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Organic molecular crystals constitute a class of materials of critical importance in numerous industries. Despite the ubiquity of these systems, our ability to predict molecular crystal structures starting only from a two-dimensional diagram of the constituent compound(s) remains a significant challenge. Most structure-prediction protocols require a customized interatomic interaction model on which the quality of the results can depend sensitively. To overcome this problem, we introduce a new topological approach to molecular crystal structure prediction. The approach posits that in a stable structure, molecules are oriented such that principal axes and normal ring plane vectors are aligned with specific crystallographic directions and that heavy atoms occupy positions that correspond to minima of a set of geometric order parameters. By minimizing an objective function that encodes these orientations and atomic positions, and filtering based on the vdW free volume and intermolecular close contact distributions derived from the Cambridge Structural Database, stable structures and polymorphs for a given crystal can be predicted entirely mathematically without reliance on an interaction model.
Collapse
Affiliation(s)
| | - Mark E Tuckerman
- Department of Chemistry, New York University, New York, NY, USA.
- Courant Institute of Mathematical Sciences, New York University, New York, NY, USA.
- NYU-ECNU Center for Computational Chemistry, NYU Shanghai, Shanghai, China.
- Simons Center for Computational Physical Chemistry at New York University, New York, NY, USA.
| |
Collapse
|
3
|
Contreras-Montoya R, Álvarez de Cienfuegos L, Gavira JA, Steed JW. Supramolecular gels: a versatile crystallization toolbox. Chem Soc Rev 2024; 53:10604-10619. [PMID: 39258871 DOI: 10.1039/d4cs00271g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Supramolecular gels are unique materials formed through the self-assembly of molecular building blocks, typically low molecular weight gelators (LMWGs), driven by non-covalent interactions. The process of crystallization within supramolecular gels has broadened the scope of the traditional gel-phase crystallization technique offering the possibility of obtaining crystals of higher quality and size. The broad structural diversity of LMWGs allows crystallization in multiple organic and aqueous solvents, favouring screening and optimization processes and the possibility to search for novel polymorphic forms. These supramolecular gels have been used for the crystallization of inorganic, small organic compounds of pharmaceutical interest, and proteins. Results have shown that these gels are not only able to produce crystals of high quality but also to influence polymorphism and physicochemical properties of the crystals, giving rise to crystals with potential new bio- and technological applications. Thus, understanding the principles of crystallization in supramolecular gels is essential for tailoring their properties and applications, ranging from drug delivery systems to composite crystals with tunable stability properties. In this review, we summarize the use of LMWG-based supramolecular gels as media to grow single crystals of a broad range of compounds.
Collapse
Affiliation(s)
| | - Luis Álvarez de Cienfuegos
- Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, E-18071, Granada, Spain
| | - José A Gavira
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra (IACT, CSIC), E-18100, Granada, Spain
| | | |
Collapse
|
4
|
Hartstein M, Ohad G, Kronik L. Predicting the Color Polymorphism of ROY from a Time-Dependent Optimally Tuned Screened Range-Separated Hybrid Functional. J Chem Theory Comput 2024; 20:5510-5516. [PMID: 38842436 PMCID: PMC11238539 DOI: 10.1021/acs.jctc.4c00433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Polymorphism is a well-known property of molecular crystals, which allows the same molecule to form solids with several crystalline structures that can differ significantly in physical properties. Polymorphs that possess different optical absorption properties in the visible range may exhibit different perceived colors, a phenomenon known as color polymorphism. One striking example of color polymorphism is given by 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile, known as ROY for its red-orange-yellow colors. First-principles prediction of color polymorphism may help in polymorph assignment and design but has proven to be challenging. Here, we predict the absorption spectra and simulate the colors of 12 ROY polymorphs using the general, nonempirical method of time-dependent (TD) optimally tuned screened range-separated hybrid (OT-SRSH) functional. For 5 ROY polymorphs with known experimental absorption spectra, we show that the TD-OT-SRSH approach predicts absorption spectra in quantitative agreement with experiment. For all polymorphs, we show that an accurate simulation of the colors is obtained, paving the way to a fully predictive, low-cost calculation of color polymorphism.
Collapse
Affiliation(s)
- Michal Hartstein
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth 7610001, Israel
| | - Guy Ohad
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth 7610001, Israel
| | - Leeor Kronik
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth 7610001, Israel
| |
Collapse
|
5
|
Yusov A, Dillon AM, Chaudhry MT, Newman JA, Lee AY, Ward MD. Benchmarking Guanidinium Organosulfonate Hydrogen-Bonded Frameworks for Structure Determination of Encapsulated Guests. ACS MATERIALS LETTERS 2024; 6:1906-1912. [PMID: 38726044 PMCID: PMC11077584 DOI: 10.1021/acsmaterialslett.4c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024]
Abstract
Single crystal X-ray diffraction (SCXRD) is arguably the most definitive method for molecular structure determination, but it is often challenged by compounds that are liquids or oils at room temperature or do not form crystals adequate for analysis. Our laboratory previously reported a simple, cost-effective, single-step crystallization method based on guanidinium organosulfonate (GS) hydrogen bonded frameworks for structure determination of a wide range of encapsulated guest molecules, including assignment of the absolute configuration of chiral centers. Herein, we expand on those results and report a head-to-head comparison of the GS method with adamantoid "molecular chaperones", which have been reported to be useful hosts for structure determination. Inclusion compounds limited to only two GS hosts are characterized by low R1 values and Flack parameters, infrequent disorder of the host and guest, and manageable disorder when it does exist. The structures of some target molecules that were not included or resolved using the adamantoid chaperones were successfully included and resolved by the GS hosts, and vice versa. Of the 32 guests attempted by the GS method, 31 inclusion compounds afforded successful guest structure solutions, a 97% success rate. The GS hosts and adamantoid chaperones are complementary with respect to guest inclusion, arguing that both should be employed in the arsenal of methods for structure determination. Furthermore, the low cost of organosulfonate host components promises an accessible route to molecular structure determination for a wide range of users.
Collapse
Affiliation(s)
- Anna Yusov
- Department
of Chemistry and Molecular Design Institute, New York University, New York
City, New York 10003, United States
| | - Alexandra M. Dillon
- Department
of Chemistry and Molecular Design Institute, New York University, New York
City, New York 10003, United States
| | - Mohammad T. Chaudhry
- Analytical
Research and Development, Merck & Co.,
Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Justin A. Newman
- Analytical
Research and Development, Merck & Co.,
Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Alfred Y. Lee
- Analytical
Research and Development, Merck & Co.,
Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Michael D. Ward
- Department
of Chemistry and Molecular Design Institute, New York University, New York
City, New York 10003, United States
| |
Collapse
|
6
|
Dillon A, Yusov A, Chaudhry MT, Newman JA, Demkiw KM, Woerpel KA, Lee AY, Ward MD. Supramolecular Mille-Feuille: Adaptive Guest Inclusion in a New Aliphatic Guanidinium Monosulfonate Hydrogen-Bonded Framework. CRYSTAL GROWTH & DESIGN 2024; 24:3483-3490. [PMID: 38659662 PMCID: PMC11036357 DOI: 10.1021/acs.cgd.4c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
During the past three decades, the ability of guanidinium arenesulfonate host frameworks to encapsulate a wide range of guests has been amply demonstrated, with more than 700 inclusion compounds realized. Herein, we report crystalline inclusion compounds based on a new aliphatic host, guanidinium cyclohexanemonosulfonate, which surprisingly exhibits four heretofore unobserved architectures, as described by the projection topologies of the organosulfonate residues above and below hydrogen-bonded guanidinium sulfonate sheets. The inclusion compounds adopt a layer motif of guanidinium sulfonate sheets interleaved with guest molecules, resembling a mille-feuille pastry. The aliphatic character of this remarkably simple host, combined with access to greater architectural diversity and adaptability, enables the host framework to accommodate a wide range of guests and promises to expand the utility of guanidinium organosulfonate hosts.
Collapse
Affiliation(s)
- Alexandra
M. Dillon
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Anna Yusov
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Mohammad T. Chaudhry
- Analytical
Research and Development, Merck & Co.,
Inc., Rahway, New Jersey 07065, United States
| | - Justin A. Newman
- Analytical
Research and Development, Merck & Co.,
Inc., Rahway, New Jersey 07065, United States
| | - Krystyna M. Demkiw
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - K. A. Woerpel
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Alfred Y. Lee
- Analytical
Research and Development, Merck & Co.,
Inc., Rahway, New Jersey 07065, United States
| | - Michael D. Ward
- Department
of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
7
|
Ludík J, Kostková V, Kocian Š, Touš P, Štejfa V, Červinka C. First-Principles Models of Polymorphism of Pharmaceuticals: Maximizing the Accuracy-to-Cost Ratio. J Chem Theory Comput 2024; 20:2858-2870. [PMID: 38531828 PMCID: PMC11008097 DOI: 10.1021/acs.jctc.4c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
Accuracy and sophistication of in silico models of structure, internal dynamics, and cohesion of molecular materials at finite temperatures increase over time. Applicability limits of ab initio polymorph ranking that would be feasible at reasonable costs currently represent crystals of moderately sized molecules (less than 20 nonhydrogen atoms) and simple unit cells (containing rather only one symmetry-irreducible molecule). Extending the applicability range of the underlying first-principles methods to larger systems with a real-life significance, and enabling to perform such computations in a high-throughput regime represent additional challenges to be tackled in computational chemistry. This work presents a novel composite method that combines the computational efficiency of density-functional tight-binding (DFTB) methods with the accuracy of density-functional theory (DFT). Being rooted in the quasi-harmonic approximation, it uses a cheap method to perform all of the costly scans of how static and dynamic characteristics of the crystal vary with respect to its volume. Such data are subsequently corrected to agree with a higher-level model, which must be evaluated only at a single volume of the crystal. It thus enables predictions of structural, cohesive, and thermodynamic properties of complex molecular materials, such as pharmaceuticals or organic semiconductors, at a fraction of the original computational cost. As the composite model retains the solid physical background, it suffers from a minimum accuracy deterioration compared to the full treatment with the costly approach. The novel methodology is demonstrated to provide consistent results for the structural and thermodynamic properties of real-life molecular crystals and their polymorph ranking.
Collapse
Affiliation(s)
- Jan Ludík
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic
| | - Veronika Kostková
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic
| | - Štefan Kocian
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic
| | - Petr Touš
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic
| | - Vojtěch Štejfa
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic
| | - Ctirad Červinka
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic
| |
Collapse
|
8
|
Rahman M, Dannatt HRW, Blundell CD, Hughes LP, Blade H, Carson J, Tatman BP, Johnston ST, Brown SP. Polymorph Identification for Flexible Molecules: Linear Regression Analysis of Experimental and Calculated Solution- and Solid-State NMR Data. J Phys Chem A 2024; 128:1793-1816. [PMID: 38427685 PMCID: PMC10945485 DOI: 10.1021/acs.jpca.3c07732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 03/03/2024]
Abstract
The Δδ regression approach of Blade et al. [ J. Phys. Chem. A 2020, 124(43), 8959-8977] for accurately discriminating between solid forms using a combination of experimental solution- and solid-state NMR data with density functional theory (DFT) calculation is here extended to molecules with multiple conformational degrees of freedom, using furosemide polymorphs as an exemplar. As before, the differences in measured 1H and 13C chemical shifts between solution-state NMR and solid-state magic-angle spinning (MAS) NMR (Δδexperimental) are compared to those determined by gauge-including projector augmented wave (GIPAW) calculations (Δδcalculated) by regression analysis and a t-test, allowing the correct furosemide polymorph to be precisely identified. Monte Carlo random sampling is used to calculate solution-state NMR chemical shifts, reducing computation times by avoiding the need to systematically sample the multidimensional conformational landscape that furosemide occupies in solution. The solvent conditions should be chosen to match the molecule's charge state between the solution and solid states. The Δδ regression approach indicates whether or not correlations between Δδexperimental and Δδcalculated are statistically significant; the approach is differently sensitive to the popular root mean squared error (RMSE) method, being shown to exhibit a much greater dynamic range. An alternative method for estimating solution-state NMR chemical shifts by approximating the measured solution-state dynamic 3D behavior with an ensemble of 54 furosemide crystal structures (polymorphs and cocrystals) from the Cambridge Structural Database (CSD) was also successful in this case, suggesting new avenues for this method that may overcome its current dependency on the prior determination of solution dynamic 3D structures.
Collapse
Affiliation(s)
- Mohammed Rahman
- Department
of Physics, University of Warwick, Coventry CV4 7AL, U.K.
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | | | | | - Leslie P. Hughes
- Oral
Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K.
| | - Helen Blade
- Oral
Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K.
| | - Jake Carson
- Mathematics
Institute at Warwick, University of Warwick, Coventry CV4 7AL, U.K.
| | - Ben P. Tatman
- Department
of Physics, University of Warwick, Coventry CV4 7AL, U.K.
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Steven P. Brown
- Department
of Physics, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
9
|
Erriah B, Shtukenberg AG, Aronin R, McCarthy D, Brázda P, Ward MD, Kahr B. ROY Crystallization on Poly(ethylene) Fibers, a Model for Bed Net Crystallography. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:2432-2440. [PMID: 38495899 PMCID: PMC10938503 DOI: 10.1021/acs.chemmater.3c03188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
Many long-lasting insecticidal bed nets for protection against disease vectors consist of poly(ethylene) fibers in which insecticide is incorporated during manufacture. Insecticide molecules diffuse from within the supersaturated polymers to surfaces where they become bioavailable to insects and often crystallize, a process known as blooming. Recent studies revealed that contact insecticides can be highly polymorphic. Moreover, insecticidal activity is polymorph-dependent, with forms having a higher crystal free energy yielding faster insect knockdown and mortality. Consequently, the crystallographic characterization of insecticide crystals that form on fibers is critical to understanding net function and improving net performance. Structural characterization of insecticide crystals on bed net fiber surfaces, let alone their polymorphs, has been elusive owing to the minute size of the crystals, however. Using the highly polymorphous compound ROY (5-methyl-2-[(2-nitrophenyl)-amino]thiophene-3-carbonitrile) as a proxy for insecticide crystallization, we investigated blooming and crystal formation on the surface of extruded poly(ethylene) fibers containing ROY. The blooming rates, tracked from the time of extrusion, were determined by UV-vis spectroscopy after successive washes. Six crystalline polymorphs (of the 13 known) were observed on poly(ethylene) fiber surfaces, and they were identified and characterized by Raman microscopy, scanning electron microscopy, and 3D electron diffraction. These observations reveal that the crystallization and phase behavior of polymorphs forming on poly(ethylene) fibers is complex and dynamic. The characterization of blooming and microcrystals underscores the importance of bed net crystallography for the optimization of bed net performance.
Collapse
Affiliation(s)
- Bryan Erriah
- Department
of Chemistry and Molecular Design Institute, New York University, New York, 29 Washington Place, New York City, New York 10003, United States
| | - Alexander G. Shtukenberg
- Department
of Chemistry and Molecular Design Institute, New York University, New York, 29 Washington Place, New York City, New York 10003, United States
| | - Reese Aronin
- Department
of Chemistry and Molecular Design Institute, New York University, New York, 29 Washington Place, New York City, New York 10003, United States
| | - Derik McCarthy
- Department
of Chemistry and Molecular Design Institute, New York University, New York, 29 Washington Place, New York City, New York 10003, United States
| | - Petr Brázda
- Department
of Structure Analysis, Institute of Physics, Czech Academy of Sciences, Na Slovance 2/1999, Prague 8 18221, Czech Republic
| | - Michael D. Ward
- Department
of Chemistry and Molecular Design Institute, New York University, New York, 29 Washington Place, New York City, New York 10003, United States
| | - Bart Kahr
- Department
of Chemistry and Molecular Design Institute, New York University, New York, 29 Washington Place, New York City, New York 10003, United States
| |
Collapse
|
10
|
Beran GJO, Greenwell C, Cook C, Řezáč J. Improved Description of Intra- and Intermolecular Interactions through Dispersion-Corrected Second-Order Møller-Plesset Perturbation Theory. Acc Chem Res 2023; 56:3525-3534. [PMID: 37963266 DOI: 10.1021/acs.accounts.3c00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
ConspectusThe quantum chemical modeling of organic crystals and other molecular condensed-phase problems requires computationally affordable electronic structure methods which can simultaneously describe intramolecular conformational energies and intermolecular interactions accurately. To achieve this, we have developed a spin-component-scaled, dispersion-corrected second-order Møller-Plesset perturbation theory (SCS-MP2D) model. SCS-MP2D augments canonical MP2 with a dispersion correction which removes the uncoupled Hartree-Fock dispersion energy present in canonical MP2 and replaces it with a more reliable coupled Kohn-Sham treatment, all evaluated within the framework of Grimme's D3 dispersion model. The spin-component scaling is then used to improve the description of the residual (nondispersion) portion of the correlation energy.The SCS-MP2D model improves upon earlier corrected MP2 models in a few ways. Compared to the highly successful dispersion-corrected MP2C model, which is based solely on intermolecular perturbation theory, the SCS-MP2D dispersion correction improves the description of both inter- and intramolecular interactions. The dispersion correction can also be evaluated with trivial computational cost, and nuclear analytic gradients are computed readily to enable geometry optimizations. In contrast to earlier spin-component scaling MP2 models, the optimal spin-component scaling coefficients are only mildly sensitive to the choice of training data, and a single global parametrization of the model can describe both thermochemistry and noncovalent interactions.The resulting dispersion-corrected, spin-component-scaled MP2 (SCS-MP2D) model predicts conformational energies and intermolecular interactions with accuracy comparable to or better than those of many range-separated and double-hybrid density functionals, as is demonstrated on a variety of benchmark tests. Among the functionals considered here, only the revDSD-PBEP86-D3(BJ) functional gives consistently smaller errors in benchmark tests. The results presented also hint that further improvements of SCS-MP2D may be possible through a more robust fitting procedure for the seven empirical parameters.To demonstrate the performance of SCS-MP2D further, several applications to molecular crystal problems are presented. The three chosen examples all represent cases where density-driven delocalization error causes GGA or hybrid density functionals to artificially stabilize crystals exhibiting more extended π-conjugation. Our pragmatic strategy addresses the delocalization error by combining a periodic density functional theory (DFT) treatment of the infinite lattice with intramolecular/conformational energy corrections computed with SCS-MP2D. For the anticancer drug axitinib, applying the SCS-MP2D conformational energy correction produces crystal polymorph stabilities that are consistent with experiment, in contrast to earlier studies. For the crystal structure prediction of the ROY molecule, so named for its colorful red, orange, and yellow crystals, this approach leads to the first plausible crystal energy landscape, and it reveals that the lowest-energy polymorphs have already been found experimentally. Finally, in the context of photomechanical crystals, which transform light into mechanical work, these techniques are used to predict the structural transformations and extract design principles for maximizing the work performed.
Collapse
Affiliation(s)
- Gregory J O Beran
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Chandler Greenwell
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Cameron Cook
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Jan Řezáč
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic
| |
Collapse
|
11
|
Beran GJO. Frontiers of molecular crystal structure prediction for pharmaceuticals and functional organic materials. Chem Sci 2023; 14:13290-13312. [PMID: 38033897 PMCID: PMC10685338 DOI: 10.1039/d3sc03903j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
The reliability of organic molecular crystal structure prediction has improved tremendously in recent years. Crystal structure predictions for small, mostly rigid molecules are quickly becoming routine. Structure predictions for larger, highly flexible molecules are more challenging, but their crystal structures can also now be predicted with increasing rates of success. These advances are ushering in a new era where crystal structure prediction drives the experimental discovery of new solid forms. After briefly discussing the computational methods that enable successful crystal structure prediction, this perspective presents case studies from the literature that demonstrate how state-of-the-art crystal structure prediction can transform how scientists approach problems involving the organic solid state. Applications to pharmaceuticals, porous organic materials, photomechanical crystals, organic semi-conductors, and nuclear magnetic resonance crystallography are included. Finally, efforts to improve our understanding of which predicted crystal structures can actually be produced experimentally and other outstanding challenges are discussed.
Collapse
Affiliation(s)
- Gregory J O Beran
- Department of Chemistry, University of California Riverside Riverside CA 92521 USA
| |
Collapse
|
12
|
Brown M, Skelton JM, Popelier PLA. Application of the FFLUX Force Field to Molecular Crystals: A Study of Formamide. J Chem Theory Comput 2023; 19:7946-7959. [PMID: 37847867 PMCID: PMC10653110 DOI: 10.1021/acs.jctc.3c00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Indexed: 10/19/2023]
Abstract
In this work, we present the first application of the quantum chemical topology force field FFLUX to the solid state. FFLUX utilizes Gaussian process regression machine learning models trained on data from the interacting quantum atom partitioning scheme to predict atomic energies and flexible multipole moments that change with geometry. Here, the ambient (α) and high-pressure (β) polymorphs of formamide are used as test systems and optimized using FFLUX. Optimizing the structures with increasing multipolar ranks indicates that the lattice parameters of the α phase differ by less than 5% to the experimental structure when multipole moments up to the quadrupole are used. These differences are found to be in line with the dispersion-corrected density functional theory. Lattice dynamics calculations are also found to be possible using FFLUX, yielding harmonic phonon spectra comparable to dispersion-corrected DFT while enabling larger supercells to be considered than is typically possible with first-principles calculations. These promising results indicate that FFLUX can be used to accurately determine properties of molecular solids that are difficult to access using DFT, including the structural dynamics, free energies, and properties at finite temperature.
Collapse
Affiliation(s)
- Matthew
L. Brown
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, Britain
| | - Jonathan M. Skelton
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, Britain
| | - Paul L. A. Popelier
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, Britain
| |
Collapse
|
13
|
Sacchi P, Neoptolemou P, Davey RJ, Reutzel-Edens SM, Cruz-Cabeza AJ. Do metastable polymorphs always grow faster? Measuring and comparing growth kinetics of three polymorphs of tolfenamic acid. Chem Sci 2023; 14:11775-11789. [PMID: 37920342 PMCID: PMC10619645 DOI: 10.1039/d3sc02040a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023] Open
Abstract
The phenomenon of molecular crystal polymorphism is of central importance for all those industries that rely on crystallisation for the manufacturing of their products. Computational methods for the evaluation of thermodynamic properties of polymorphs have become incredibly accurate and a priori prediction of crystal structures is becoming routine. The computational study and prediction of the kinetics of crystallisation impacting polymorphism, however, have received considerably less attention despite their crucial role in directing crystallisation outcomes. This is mainly due to the lack of available experimental data, as nucleation and growth kinetics of polymorphs are generally difficult to measure. On the one hand, the determination of overall nucleation and growth kinetics through batch experiments suffers from unwanted polymorphic transformations or the absence of experimental conditions under which several polymorphs can be nucleated. On the other hand, growth rates of polymorphs obtained from measurements of single crystals are often only recorded along a few specific crystal dimensions, thus lacking information about overall growth and rendering an incomplete picture of the problem. In this work, we measure the crystal growth kinetics of three polymorphs (I, II and IX) of tolfenamic acid (TFA) in isopropanol solutions, with the intention of providing a meaningful comparison of their growth rates. First, we analyse the relation between the measured growth rates and the crystal structures of the TFA polymorphs. We then explore ways to compare their relative growth rates and discuss their significance when trying to determine which polymorph grows faster. Using approximations for describing the volume of TFA crystals, we show that while crystals of the metastable TFA-II grow the fastest at all solution concentrations, crystals of the metastable TFA-IX become kinetically competitive as the driving force for crystallisation increases. Overall, both metastable forms TFA-II and TFA-IX grow faster than the stable TFA-I.
Collapse
Affiliation(s)
- Pietro Sacchi
- The Cambridge Crystallographic Data Centre 12 Union Road Cambridge CB2 1EZ UK
- Department of Chemical Engineering, University of Manchester Manchester UK
| | - Petros Neoptolemou
- Department of Chemical Engineering, University of Manchester Manchester UK
| | - Roger J Davey
- Department of Chemical Engineering, University of Manchester Manchester UK
| | | | - Aurora J Cruz-Cabeza
- Department of Chemical Engineering, University of Manchester Manchester UK
- Department of Chemistry, Durham University Durham UK
| |
Collapse
|
14
|
Firaha D, Liu YM, van de Streek J, Sasikumar K, Dietrich H, Helfferich J, Aerts L, Braun DE, Broo A, DiPasquale AG, Lee AY, Le Meur S, Nilsson Lill SO, Lunsmann WJ, Mattei A, Muglia P, Putra OD, Raoui M, Reutzel-Edens SM, Rome S, Sheikh AY, Tkatchenko A, Woollam GR, Neumann MA. Predicting crystal form stability under real-world conditions. Nature 2023; 623:324-328. [PMID: 37938708 PMCID: PMC10632141 DOI: 10.1038/s41586-023-06587-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/30/2023] [Indexed: 11/09/2023]
Abstract
The physicochemical properties of molecular crystals, such as solubility, stability, compactability, melting behaviour and bioavailability, depend on their crystal form1. In silico crystal form selection has recently come much closer to realization because of the development of accurate and affordable free-energy calculations2-4. Here we redefine the state of the art, primarily by improving the accuracy of free-energy calculations, constructing a reliable experimental benchmark for solid-solid free-energy differences, quantifying statistical errors for the computed free energies and placing both hydrate crystal structures of different stoichiometries and anhydrate crystal structures on the same energy landscape, with defined error bars, as a function of temperature and relative humidity. The calculated free energies have standard errors of 1-2 kJ mol-1 for industrially relevant compounds, and the method to place crystal structures with different hydrate stoichiometries on the same energy landscape can be extended to other multi-component systems, including solvates. These contributions reduce the gap between the needs of the experimentalist and the capabilities of modern computational tools, transforming crystal structure prediction into a more reliable and actionable procedure that can be used in combination with experimental evidence to direct crystal form selection and establish control5.
Collapse
Affiliation(s)
| | | | | | | | | | - Julian Helfferich
- Avant-garde Materials Simulation, Merzhausen, Germany
- JobRad, Freiburg, Germany
| | - Luc Aerts
- UCB Pharma SA, Chemin du Foriest, Braine-l'Alleud, Belgium
| | - Doris E Braun
- Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Anders Broo
- Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca Gothenburg, Mölndal, Sweden
| | | | - Alfred Y Lee
- Merck, Analytical Research & Development, Rahway, NJ, USA
| | - Sarah Le Meur
- UCB Pharma SA, Chemin du Foriest, Braine-l'Alleud, Belgium
| | - Sten O Nilsson Lill
- Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca Gothenburg, Mölndal, Sweden
| | | | - Alessandra Mattei
- Solid State Chemistry, Research & Development, AbbVie, North Chicago, IL, USA
| | | | - Okky Dwichandra Putra
- Early Product Development and Manufacturing, Pharmaceutical Sciences R&D, AstraZeneca Gothenburg, Mölndal, Sweden
| | | | - Susan M Reutzel-Edens
- Cambridge Crystallographic Data Centre, Cambridge, UK
- SuRE Pharma Consulting, Zionsville, IN, USA
| | - Sandrine Rome
- UCB Pharma SA, Chemin du Foriest, Braine-l'Alleud, Belgium
| | - Ahmad Y Sheikh
- Solid State Chemistry, Research & Development, AbbVie, North Chicago, IL, USA
| | - Alexandre Tkatchenko
- Department of Physics and Materials Science, University of Luxembourg, Luxembourg City, Luxembourg
| | | | | |
Collapse
|
15
|
Ward M, Taylor CR, Mulvee MT, Lampronti GI, Belenguer AM, Steed JW, Day GM, Oswald IDH. Pushing Technique Boundaries to Probe Conformational Polymorphism. CRYSTAL GROWTH & DESIGN 2023; 23:7217-7230. [PMID: 37808905 PMCID: PMC10557047 DOI: 10.1021/acs.cgd.3c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/11/2023] [Indexed: 10/10/2023]
Abstract
We present an extensive exploration of the solid-form landscape of chlorpropamide (CPA) using a combined experimental-computational approach at the frontiers of both fields. We have obtained new conformational polymorphs of CPA, placing them into context with known forms using flexible-molecule crystal structure prediction. We highlight the formation of a new polymorph (ζ-CPA) via spray-drying experiments despite its notable metastability (14 kJ/mol) relative to the thermodynamic α-form, and we identify and resolve the ball-milled η-form isolated in 2019. Additionally, we employ impurity- and gel-assisted crystallization to control polymorphism and the formation of novel multicomponent forms. We, thus, demonstrate the power of this collaborative screening approach to observe, rationalize, and control the formation of new metastable forms.
Collapse
Affiliation(s)
- Martin
R. Ward
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K.
| | - Christopher R. Taylor
- Computational
Systems Chemistry, School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Matthew T. Mulvee
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K.
| | - Giulio I. Lampronti
- Department
of Materials Science & Metallurgy, University
of Cambridge, 27 Charles Babbage Rd, Cambridge CB3 0FS, U.K.
| | - Ana M. Belenguer
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield
Road, Cambridge CB2 1EW, U.K.
| | - Jonathan W. Steed
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K.
| | - Graeme M. Day
- Computational
Systems Chemistry, School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Iain D. H. Oswald
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K.
| |
Collapse
|
16
|
Cook CJ, Perry CJ, Beran GJO. Organic Crystal Packing Is Key to Determining the Photomechanical Response. J Phys Chem Lett 2023:6823-6831. [PMID: 37487003 DOI: 10.1021/acs.jpclett.3c01676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Organic photomechanical crystals have great promise as molecular machines, but their development has been hindered by a lack of clear theoretical design principles. While much research has focused on the choice of the molecular photochrome, density functional theory calculations here demonstrate that crystal packing has a major impact on the work densities that can be produced by a photochrome. Examination of two diarylethene molecules reveals that the predicted work densities can vary by an order of magnitude across different experimentally known crystal structures of the same species. The highest work densities occur when molecules are aligned in parallel, thereby producing a highly anisotropic photomechanical response. These results suggest that a greater emphasis on polymorph screening and/or crystal engineering could improve the work densities achieved by photomechanical engines. Finally, an inherent thermodynamic asymmetry is identified that biases photomechanical engines to exhibit higher work densities in the forward stroke direction.
Collapse
Affiliation(s)
- Cameron J Cook
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Cody J Perry
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Gregory J O Beran
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
17
|
Butler PWV, Day GM. Reducing overprediction of molecular crystal structures via threshold clustering. Proc Natl Acad Sci U S A 2023; 120:e2300516120. [PMID: 37252993 PMCID: PMC10266058 DOI: 10.1073/pnas.2300516120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/01/2023] [Indexed: 06/01/2023] Open
Abstract
Crystal structure prediction is becoming an increasingly valuable tool for assessing polymorphism of crystalline molecular compounds, yet invariably, it overpredicts the number of polymorphs. One of the causes for this overprediction is in neglecting the coalescence of potential energy minima, separated by relatively small energy barriers, into a single basin at finite temperature. Considering this, we demonstrate a method underpinned by the threshold algorithm for clustering potential energy minima into basins, thereby identifying kinetically stable polymorphs and reducing overprediction.
Collapse
Affiliation(s)
- Patrick W. V. Butler
- School of Chemistry, University of Southampton, SouthamptonSO17 1BJ, United Kingdom
| | - Graeme M. Day
- School of Chemistry, University of Southampton, SouthamptonSO17 1BJ, United Kingdom
| |
Collapse
|
18
|
Hartman JD, Spock LE, Harper JK. Benchmark accuracy of predicted NMR observables for quadrupolar 14 N and 17 O nuclei in molecular crystals. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:253-267. [PMID: 36567433 DOI: 10.1002/mrc.5328] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Nuclear quadrupole resonances for 14 N and 17 O nuclei are exquisitely sensitive to interactions with surrounding atoms. As a result, nitrogen and oxygen solid-state nuclear magnetic resonance (ssNMR) provides a powerful tool for investigating structure and dynamics in complex systems. First-principles calculations are increasingly used to facilitate spectral assignment and to evaluate and adjust crystal structures. Recent work combining the strengths of planewave density functional theory (DFT) calculations with a single molecule correction obtained using a higher level of theory has proven successful in improving the accuracy of predicted chemical shielding (CS) tensors and 17 O quadrupolar coupling constants ( C q ). Here we extend this work by examining the accuracy of predicted 14 N and 17 O electric field gradient (EFG) tensor components obtained using alternative planewave-corrections involving cluster and two-body fragment-based calculations. We benchmark the accuracy of CS and EFG tensor predictions for both nitrogen and oxygen using planewave, two-body fragment, and enhanced planewave-corrected techniques. Combining planewave and two-body fragment calculations reduces the error in predicted 17 O C q values by 35% relative to traditional planewave calculations. These enhanced planewave-correction methods improve the accuracy of 17 O and 14 N EFG tensor components by 15% relative to planewave DFT but yield minimal improvement relative to a simple molecular correction. However, in structural environments involving either high symmetry or strong intermolecular interactions, enhanced planewave-corrected methods provide a distinct advantage.
Collapse
Affiliation(s)
- Joshua D Hartman
- Department of Chemistry, University of California, Riverside, Riverside, California, USA
| | - Lilian E Spock
- Department of Chemistry, University of California, Riverside, Riverside, California, USA
| | - James K Harper
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
19
|
Sargent CT, Metcalf DP, Glick ZL, Borca CH, Sherrill CD. Benchmarking two-body contributions to crystal lattice energies and a range-dependent assessment of approximate methods. J Chem Phys 2023; 158:054112. [PMID: 36754814 DOI: 10.1063/5.0141872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Using the many-body expansion to predict crystal lattice energies (CLEs), a pleasantly parallel process, allows for flexibility in the choice of theoretical methods. Benchmark-level two-body contributions to CLEs of 23 molecular crystals have been computed using interaction energies of dimers with minimum inter-monomer separations (i.e., closest contact distances) up to 30 Å. In a search for ways to reduce the computational expense of calculating accurate CLEs, we have computed these two-body contributions with 15 different quantum chemical levels of theory and compared these energies to those computed with coupled-cluster in the complete basis set (CBS) limit. Interaction energies of the more distant dimers are easier to compute accurately and several of the methods tested are suitable as replacements for coupled-cluster through perturbative triples for all but the closest dimers. For our dataset, sub-kJ mol-1 accuracy can be obtained when calculating two-body interaction energies of dimers with separations shorter than 4 Å with coupled-cluster with single, double, and perturbative triple excitations/CBS and dimers with separations longer than 4 Å with MP2.5/aug-cc-pVDZ, among other schemes, reducing the number of dimers to be computed with coupled-cluster by as much as 98%.
Collapse
Affiliation(s)
- Caroline T Sargent
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Derek P Metcalf
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Zachary L Glick
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Carlos H Borca
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - C David Sherrill
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|
20
|
Cook CJ, Li W, Lui BF, Gately TJ, Al-Kaysi RO, Mueller LJ, Bardeen CJ, Beran GJO. A theoretical framework for the design of molecular crystal engines. Chem Sci 2023; 14:937-949. [PMID: 36755715 PMCID: PMC9890974 DOI: 10.1039/d2sc05549j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Photomechanical molecular crystals have garnered attention for their ability to transform light into mechanical work, but difficulties in characterizing the structural changes and mechanical responses experimentally have hindered the development of practical organic crystal engines. This study proposes a new computational framework for predicting the solid-state crystal-to-crystal photochemical transformations entirely from first principles, and it establishes a photomechanical engine cycle that quantifies the anisotropic mechanical performance resulting from the transformation. The approach relies on crystal structure prediction, solid-state topochemical principles, and high-quality electronic structure methods. After validating the framework on the well-studied [4 + 4] cycloadditions in 9-methyl anthracene and 9-tert-butyl anthracene ester, the experimentally-unknown solid-state transformation of 9-carboxylic acid anthracene is predicted for the first time. The results illustrate how the mechanical work is done by relaxation of the crystal lattice to accommodate the photoproduct, rather than by the photochemistry itself. The large ∼107 J m-3 work densities computed for all three systems highlight the promise of photomechanical crystal engines. This study demonstrates the importance of crystal packing in determining molecular crystal engine performance and provides tools and insights to design improved materials in silico.
Collapse
Affiliation(s)
- Cameron J. Cook
- Department of Chemistry, University of California RiversideRiverside CA 92521USA
| | - Wangxiang Li
- Department of Chemistry, University of California Riverside Riverside CA 92521 USA
| | - Brandon F. Lui
- Department of Chemistry, University of California RiversideRiverside CA 92521USA
| | - Thomas J. Gately
- Department of Chemistry, University of California RiversideRiverside CA 92521USA
| | - Rabih O. Al-Kaysi
- College of Science and Health Professions-3124, King Saud Bin Abdulaziz University for Health Sciences, and King Abdullah International Medical Research Center, Ministry of National Guard Health AffairsRiyadh 11426Kingdom of Saudi Arabia
| | - Leonard J. Mueller
- Department of Chemistry, University of California RiversideRiverside CA 92521USA
| | | | - Gregory J. O. Beran
- Department of Chemistry, University of California RiversideRiverside CA 92521USA
| |
Collapse
|
21
|
Awwadi FF, Alwahsh MI, Turnbull MM, Landee CP. Halogen bond and polymorphism in trans-bis(2-iodo-5-halopyridine)dihalocopper( ii) complexes: crystallographic, theoretical and magnetic studies. CrystEngComm 2023. [DOI: 10.1039/d2ce01711c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
As the halogen atom on position 5 of the 2I5YP ligand gets heavier the probability of crystallizing the syn-conformer increases; 2I5Cl-Cl crystallizes as the anti-conformer whereas 2I5Br-Cl crystallizes as syn- and anti-conformers.
Collapse
|
22
|
Saha BK, Nath NK, Thakuria R. Polymorphs with Remarkably Distinct Physical and/or Chemical Properties. CHEM REC 2023; 23:e202200173. [PMID: 36166697 DOI: 10.1002/tcr.202200173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/30/2022] [Indexed: 01/21/2023]
Abstract
Polymorphism in crystals is known since 1822 and the credit goes to Mitscherlich who realized the existence of different crystal structures of the same compound while working with some arsenate and phosphate salts. Later on, this phenomenon was observed also in organic crystals. With the advent of different technologies, especially the easy availability of single crystal XRD instruments, polymorphism in crystals has become a common phenomenon. Almost 37 % of compounds (single component) are polymorphic to date. As the energies of the different polymorphic forms are very close to each other, small changes in crystallization conditions might lead to different polymorphic structures. As a result, sometimes it is difficult to control polymorphism. For this reason, it is considered to be a nuisance to crystal engineering. It has been realized that the property of a material depends not only on the molecular structure but also on its crystal structure. Therefore, it is not only of interest to academia but also has widespread applications in the materials science as well as pharmaceutical industries. In this review, we have discussed polymorphism which causes significant changes in materials properties in different fields of solid-state science, such as electrical, magnetic, SHG, thermal expansion, mechanical, luminescence, color, and pharmaceutical. Therefore, this review will interest researchers from supramolecular chemistry, materials science as well as medicinal chemistry.
Collapse
Affiliation(s)
- Binoy K Saha
- Department of Chemistry, Pondicherry University, Puducherry, 605014, India
| | - Naba K Nath
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, Meghalaya 793003, India
| | - Ranjit Thakuria
- Department of Chemistry, Gauhati University, Guwahati, 781014, India
| |
Collapse
|
23
|
Kumar A, Pandey P, Gau MR, Carroll PJ, Schelter EJ. Metalating 5-Methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile (ROY): Understanding the Denticity and Speciation of Complexes of the ROY Anion. Inorg Chem 2022; 61:20785-20792. [PMID: 36519699 DOI: 10.1021/acs.inorgchem.2c02629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
5-Methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile (ROY) is considered to be the most crystalline polymorphic organic molecule discovered to date with 12 fully characterized crystal structures present in the Cambridge Structural Database (CSD). However, metal complexes of ROY have not previously been described. Here, we explore the synthetic chemistry of ROY (denoted as H-ROY hereafter for the purpose of our study) and demonstrate that it can be deprotonated using either NaH or KH and that the resulting sodium and potassium salts of H-ROY can be cleanly isolated. Furthermore, we introduce two new metal complexes of the ROY anion (ROY-) with Co(II) and Ni(II) cations, formed by the reaction of the sodium salt of ROY, Na(ROY), with the respective transition-metal chloride salts. Solid-state X-ray diffraction studies confirm the presence of Co(II) or Ni(II) centers, with the ROY- ligand in a 1:2 ratio forming neutral trinuclear clusters of the forms [Co3ROY6] (Co-ROY) and [Ni3ROY6] (Ni-ROY) in both cases. Here, the ROY- moiety interacts with the metal center through the anionic N atom, an O atom of the -NO2 group, and the N atom of the -CN group. IR and electronic absorption spectroscopies reveal the influence of the Co(II) and Ni(II) centers on the properties of the complexes. Taken together, our results show that the metal complexes of the H-ROY proligand can be prepared with late 3d transition metals. The results of these structural chemistry studies may contribute to resolving polymorphism in H-ROY and related compounds.
Collapse
Affiliation(s)
- Amit Kumar
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Pragati Pandey
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Michael R Gau
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Patrick J Carroll
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Eric J Schelter
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
24
|
Hartman JD, Harper JK. Improving the accuracy of GIPAW chemical shielding calculations with cluster and fragment corrections. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 122:101832. [PMID: 36198253 DOI: 10.1016/j.ssnmr.2022.101832] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Ab initio methods for predicting NMR parameters in the solid state are an essential tool for assigning experimental spectra and play an increasingly important role in structural characterizations. Recently, a molecular correction (MC) technique has been developed which combines the strengths of plane-wave methods (GIPAW) with single molecule calculations employing Gaussian basis sets. The GIPAW + MC method relies on a periodic calculation performed at a lower level of theory to model the crystalline environment. The GIPAW result is then corrected using a single molecule calculation performed at a higher level of theory. The success of the GIPAW + MC method in predicting a range of NMR parameters is a result of the highly local character of the tensors underlying the NMR observable. However, in applications involving strong intermolecular interactions we find that expanding the region treated at the higher level of theory more accurately captures local many-body contributions to the N15 NMR chemical shielding (CS) tensor. We propose alternative corrections to GIPAW which capture interactions between adjacent molecules at a higher level of theory using either fragment or cluster-based calculations. Benchmark calculations performed on N15 and C13 data sets show that these advanced GIPAW-corrected calculations improve the accuracy of chemical shielding tensor predictions relative to existing methods. Specifically, cluster-based N15 corrections show a 24% and 17% reduction in RMS error relative to GIPAW and GIPAW + MC calculations, respectively. Comparing the benchmark data sets using multiple computational models demonstrates that N15 CS tensor calculations are significantly more sensitive to intermolecular interactions relative to C13. However, fragment and cluster-based corrections that include direct hydrogen bond partners are sufficient for optimizing the accuracy of GIPAW-corrected methods. Finally, GIPAW-corrected methods are applied to the particularly challenging NMR spectral assignment of guanosine dihydrate which contains two guanosine molecules in the asymmetric unit.
Collapse
Affiliation(s)
- Joshua D Hartman
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States.
| | - James K Harper
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States.
| |
Collapse
|
25
|
Pokorný V, Touš P, Štejfa V, Růžička K, Rohlíček J, Czernek J, Brus J, Červinka C. Anisotropy, segmental dynamics and polymorphism of crystalline biogenic carboxylic acids. Phys Chem Chem Phys 2022; 24:25904-25917. [PMID: 36260017 DOI: 10.1039/d2cp03698c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Carboxylic acids of the Krebs cycle possess invaluable biochemical significance. Still, there are severe gaps in the availability of thermodynamic and crystallographic data, as well as ambiguities prevailing in the literature on the thermodynamic characterization and polymorph ranking. Providing an unambiguous description of the structure, thermodynamics and polymorphism of their neat crystalline phases requires a complex multidisciplinary approach. This work presents results of an extensive investigation of the structural anisotropy of the thermal expansion and local dynamics within these crystals, obtained from a beneficial cooperation of NMR crystallography and ab initio calculations of non-covalent interactions. The observed structural anisotropy and spin-lattice relaxation times are traced to large spatial variations in the strength of molecular interactions in the crystal lattice, especially in the orientation of the hydrogen bonds. A completely resolved crystal structure for oxaloacetic acid is reported for the first time. Thanks to multi-instrumental calorimetric effort, this work clarifies phase behavior, determines third-law entropies of the crystals, and states definitive polymorph ranking for succinic and fumaric acids. These thermodynamic observations are then interpreted in terms of first-principles quasi-harmonic calculations of cohesive properties. A sophisticated model capturing electronic, thermal, and configurational-entropic effects on the crystal structure approaches captures the subtle Gibbs energy differences governing polymorph ranking for succinic and fumaric acids, representing another success story of computational chemistry.
Collapse
Affiliation(s)
- Václav Pokorný
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic.
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, CZ-162 06 Prague 6, Czech Republic
| | - Petr Touš
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic.
| | - Vojtěch Štejfa
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic.
| | - Květoslav Růžička
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic.
| | - Jan Rohlíček
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, CZ-182 21 Prague 8, Czech Republic
| | - Jiří Czernek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, CZ-162 06 Prague 6, Czech Republic
| | - Jiří Brus
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, CZ-162 06 Prague 6, Czech Republic
| | - Ctirad Červinka
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic.
| |
Collapse
|
26
|
Rana B, Beran GJO, Herbert JM. Correcting π-delocalisation errors in conformational energies using density-corrected DFT, with application to crystal polymorphs. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2138789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Bhaskar Rana
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | | | - John M. Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
27
|
Mattei A, Hong RS, Dietrich H, Firaha D, Helfferich J, Liu YM, Sasikumar K, Abraham NS, Miglani Bhardwaj R, Neumann MA, Sheikh AY. Efficient Crystal Structure Prediction for Structurally Related Molecules with Accurate and Transferable Tailor-Made Force Fields. J Chem Theory Comput 2022; 18:5725-5738. [PMID: 35930763 PMCID: PMC9476662 DOI: 10.1021/acs.jctc.2c00451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Crystal structure prediction (CSP) his generally used to complement experimental solid form screening and applied to individual molecules in drug development. The fast development of algorithms and computing resources offers the opportunity to use CSP earlier and for a broader range of applications in the drug design cycle. This study presents a novel paradigm of CSP specifically designed for structurally related molecules, referred to as Quick-CSP. The approach prioritizes more accurate physics through robust and transferable tailor-made force fields (TMFFs), such that significant efficiency gains are achieved through the reduction of expensive ab initio calculations. The accuracy of the TMFF is increased by the introduction of electrostatic multipoles, and the fragment-based force field parameterization scheme is demonstrated to be transferable for a family of chemically related molecules. The protocol is benchmarked with structurally related compounds from the Bromodomain and Extraterminal (BET) domain inhibitors series. A new convergence criterion is introduced that aims at performing only as many ab initio optimizations of crystal structures as required to locate the bottom of the crystal energy landscape within a user-defined accuracy. The overall approach provides significant cost savings ranging from three- to eight-fold less than the full-CSP workflow. The reported advancements expand the scope and utility of the underlying CSP building blocks as well as their novel reassembly to other applications earlier in the drug design cycle to guide molecule design and selection.
Collapse
Affiliation(s)
- Alessandra Mattei
- Solid State Chemistry, Research & Development, AbbVie Inc., 1 N Waukegan Road, North Chicago, Illinois 60064, United States
| | - Richard S Hong
- Solid State Chemistry, Research & Development, AbbVie Inc., 1 N Waukegan Road, North Chicago, Illinois 60064, United States
| | - Hanno Dietrich
- Avant-garde Materials Simulation, GmbH, Alte Str. 2, 79249 Merzhausen, Germany
| | - Dzmitry Firaha
- Avant-garde Materials Simulation, GmbH, Alte Str. 2, 79249 Merzhausen, Germany
| | - Julian Helfferich
- Avant-garde Materials Simulation, GmbH, Alte Str. 2, 79249 Merzhausen, Germany
| | - Yifei Michelle Liu
- Avant-garde Materials Simulation, GmbH, Alte Str. 2, 79249 Merzhausen, Germany
| | - Kiran Sasikumar
- Avant-garde Materials Simulation, GmbH, Alte Str. 2, 79249 Merzhausen, Germany
| | - Nathan S Abraham
- Solid State Chemistry, Research & Development, AbbVie Inc., 1 N Waukegan Road, North Chicago, Illinois 60064, United States
| | - Rajni Miglani Bhardwaj
- Solid State Chemistry, Research & Development, AbbVie Inc., 1 N Waukegan Road, North Chicago, Illinois 60064, United States
| | - Marcus A Neumann
- Avant-garde Materials Simulation, GmbH, Alte Str. 2, 79249 Merzhausen, Germany
| | - Ahmad Y Sheikh
- Solid State Chemistry, Research & Development, AbbVie Inc., 1 N Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
28
|
Liu S, Deng Y, Liu W, Li Z, Li L, Zhang R, Jiang Y. Chitosan hydrogel for controlled crystallization of loaded drug: Role of interplay of assembly processes. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
Bryenton KR, Adeleke AA, Dale SG, Johnson ER. Delocalization error: The greatest outstanding challenge in density‐functional theory. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kyle R. Bryenton
- Department of Physics and Atmospheric Science Dalhousie University Halifax Nova Scotia Canada
| | | | - Stephen G. Dale
- Queensland Micro‐ and Nanotechnology Centre Griffith University Nathan Queensland Australia
| | - Erin R. Johnson
- Department of Physics and Atmospheric Science Dalhousie University Halifax Nova Scotia Canada
- Department of Chemistry Dalhousie University Halifax Nova Scotia Canada
| |
Collapse
|
30
|
Beran GJO, Wright SE, Greenwell C, Cruz-Cabeza AJ. The interplay of intra- and intermolecular errors in modeling conformational polymorphs. J Chem Phys 2022; 156:104112. [DOI: 10.1063/5.0088027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Conformational polymorphs of organic molecular crystals represent a challenging test for quantum chemistry because they require careful balancing of the intra- and intermolecular interactions. This study examines 54 molecular conformations from 20 sets of conformational polymorphs, along with the relative lattice energies and 173 dimer interactions taken from six of the polymorph sets. These systems are studied with a variety of van der Waals-inclusive density functionals theory models; dispersion-corrected spin-component-scaled second-order Møller–Plesset perturbation theory (SCS-MP2D); and domain local pair natural orbital coupled cluster singles, doubles, and perturbative triples [DLPNO-CCSD(T)]. We investigate how delocalization error in conventional density functionals impacts monomer conformational energies, systematic errors in the intermolecular interactions, and the nature of error cancellation that occurs in the overall crystal. The density functionals B86bPBE-XDM, PBE-D4, PBE-MBD, PBE0-D4, and PBE0-MBD are found to exhibit sizable one-body and two-body errors vs DLPNO-CCSD(T) benchmarks, and the level of success in predicting the relative polymorph energies relies heavily on error cancellation between different types of intermolecular interactions or between intra- and intermolecular interactions. The SCS-MP2D and, to a lesser extent, ωB97M-V models exhibit smaller errors and rely less on error cancellation. Implications for crystal structure prediction of flexible compounds are discussed. Finally, the one-body and two-body DLPNO-CCSD(T) energies taken from these conformational polymorphs establish the CP1b and CP2b benchmark datasets that could be useful for testing quantum chemistry models in challenging real-world systems with complex interplay between intra- and intermolecular interactions, a number of which are significantly impacted by delocalization error.
Collapse
Affiliation(s)
- Gregory J. O. Beran
- Department of Chemistry, University of California, Riverside, California 92521, USA
| | - Sarah E. Wright
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester, United Kingdom
| | - Chandler Greenwell
- Department of Chemistry, University of California, Riverside, California 92521, USA
| | - Aurora J. Cruz-Cabeza
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
31
|
Beran GJO, Greenwell C, Rezac J. Spin-component-scaled and dispersion-corrected second-order Møller-Plesset perturbation theory: A path toward chemical accuracy. Phys Chem Chem Phys 2022; 24:3695-3712. [DOI: 10.1039/d1cp04922d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Second-order Moller-Plesset perturbation theory (MP2) provides a valuable alternative to density functional theory for modeing problems in organic and biological chemistry. However, MP2 suffers from known limitations in the description...
Collapse
|