1
|
Chauhan S, Swamy KCK. Phosphine vs DBU-Catalyzed Annulation Reactions of β'-Acetoxy Allenoates with Acyl-Tethered Benzothiazole Bisnucleophiles: (4 + 3) or (4 + 1) vs (3 + 3) Annulation. J Org Chem 2024; 89:10816-10830. [PMID: 39007762 DOI: 10.1021/acs.joc.4c01085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Dearomative annulation reaction of acyl-tethered benzothiazole bisnucleophiles with β'-acetoxy allenoates by switching the Lewis base is developed. The DBU-catalyzed reaction gives benzothiazole-fused 1,4-dihydropyridine carboxylates by (3 + 3) annulation chemoselectively. By contrast, the PR3-catalyzed reaction gives benzothiazole-fused azepines by (4 + 3) annulation and cyclopentene carboxylates by (4 + 1) annulation; the ratio of the latter two products depends on the solvent. A possible rationale for the difference in the reactivity, based on the 1,4/1,5-addition of the 2-acyl-tethered benzothiazole to the key phosphonium intermediate, is provided.
Collapse
Affiliation(s)
- Sachin Chauhan
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - K C Kumara Swamy
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
| |
Collapse
|
2
|
Ma J, Qi S, Yan G, Kirillov AM, Yang L, Fang R. DFT Study on the Mechanisms and Selectivities in Rh (III)-Catalyzed [5 + 1] Annulation of 2-Alkenylanilides and 2-Alkylphenols with Allenyl Acetates. J Org Chem 2024; 89:8562-8577. [PMID: 38847049 DOI: 10.1021/acs.joc.4c00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The mechanisms and regio-, chemo-, and stereoselectivity were theoretically investigated in the Rh(III)-catalyzed [5 + 1] annulation of 2-alkenylanilides and 2-alkylphenols with allenyl acetates. Two different reactants, 2-alkenylanilides and 2-alkylphenols, were selected as model systems in the density functional theory calculations. The obtained theoretical results show that both these reactants exhibit similar steps, namely, (1) N-H/O-H deprotonation and C-H activation, (2) allenyl acetate migratory insertion, (3) β-oxygen elimination, (4) intramolecular nucleophilic addition of the nitrogen/oxygen-rhodium bond resulting in [5 + 1]-annulation, and (5) protonation with the formation of the desired product and regeneration of the Rh(III) catalyst. The theoretical evidence suggests that the selectivity is determined at the step of allenyl acetate's migratory insertion. Moreover, the regioselectivity is driven by electronic effects, while the interaction energies (C-H···π and C-H···O interactions) play a more imperative role in controlling the stereoselectivity. The obtained theoretical results not only well rationalize the experimental observations but also provide important mechanistic insights for related types of [5 + 1]-annulation reactions.
Collapse
Affiliation(s)
- Ji Ma
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Simeng Qi
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Guowei Yan
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Alexander M Kirillov
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
| | - Lizi Yang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ran Fang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| |
Collapse
|
3
|
Sontakke GS, Chaturvedi AK, Jana D, Volla CMR. Pyrazolidinone-Aided Ru(II)-Catalyzed Regioselective C-H Annulation with Allenes. Org Lett 2024; 26:4480-4485. [PMID: 38767934 DOI: 10.1021/acs.orglett.4c01245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Regioselective annulation of allenes via C-H activation represents an elegant synthetic approach toward the construction of valuable scaffolds. Considering the importance of allenes, herein we developed an unprecedented Ru(II)-catalyzed highly regioselective redox-neutral C-H activation/(4 + 1)-annulation of 1-arylpyrazolidinones employing allenyl acetates to access pyrazolo[1,2-a]indazol-1-one derivatives. Additionally, allenyl cyclic carbonates, which were never tested in C-H activation, were utilized to construct a similar class of heterocycles having a pendent alcohol functionality. Notably, double C-H functionalization was achieved by a simple modification of reaction conditions. The synthetic significance of this methodology is underscored by late-stage modification of natural products, broad substrate scope, gram-scale synthesis, and postfunctionalizations.
Collapse
Affiliation(s)
- Geetanjali S Sontakke
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Atul K Chaturvedi
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Debasish Jana
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| |
Collapse
|
4
|
Liu J, Liu DY, Yang Q, Zeng YF, Wang XL, Wang PF, Ruan YJ, Wen MM, Zhang SS, Du LD, Liu XG. Cp*Rh(III)-catalyzed regioselective cyclization of aromatic amides with allenes. Chem Commun (Camb) 2024; 60:598-601. [PMID: 38099839 DOI: 10.1039/d3cc05342c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
A new Cp*Rh(III)-catalyzed regioselective cyclization reaction of aromatic amides with allenes is reported. The use of allenyl derivatives bearing a directing-group assistant as a reaction promoter was the key to the success of this protocol. In this catalytic system, N-(pivaloyloxy)benzamide substrates react with allenes via Rh-σ-alkenyl intermediates, while N-(pivaloyloxy) indol substrates react via Rh-π-allyl intermediates. These reactions were characterized by mild reaction conditions, a broad substrate scope, and high functional-group compatibility to yield several high-value isoquinolinone and pyrimido[1,6-a]indol-1(2H)-one skeleton-containing compounds. The synthetic applications and primary mechanisms were also investigated.
Collapse
Affiliation(s)
- Jing Liu
- Zhongzhou Laboratory, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China.
| | - Deng-Yin Liu
- Zhongzhou Laboratory, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China.
| | - Qian Yang
- Zhongzhou Laboratory, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China.
| | - Yao-Fu Zeng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421000, P. R. China.
| | - Xiao-Li Wang
- Zhongzhou Laboratory, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China.
| | - Peng-Fei Wang
- Zhongzhou Laboratory, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China.
| | - Yu-Jun Ruan
- Zhongzhou Laboratory, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China.
| | - Miao-Miao Wen
- Zhongzhou Laboratory, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China.
| | - Shang-Shi Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Li-da Du
- Institute of Molecular Medicine & Innovative Pharmaceutics, Qingdao University, Qingdao 266071, China.
| | - Xu-Ge Liu
- Zhongzhou Laboratory, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
5
|
Prabhakar Ganesh PSK, Muthuraja P, Gopinath P. Rh(III) Catalyzed Redox-Neutral C-H Activation/[5 + 2] Annulation of Aroyl Hydrazides and Sulfoxonium Ylides: Synthesis of Benzodiazepinones. Org Lett 2023; 25:8361-8366. [PMID: 37963274 DOI: 10.1021/acs.orglett.3c03495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
We herein report the Rh(III) catalyzed redox-neutral C-H activation/[5 + 2] annulation of aroyl hydrazides with sulfoxonium ylides as safe carbene precursors. The reaction shows excellent functional group tolerance, broad substrate scope, and scalability. We demonstrated the synthetic utility of the protocol via the synthesis of various diazepam drug analogues, late-stage functionalization of probenecid drug, and large scale synthesis. Finally, kinetic studies revealed C-H activation as the rate-determining step.
Collapse
Affiliation(s)
| | - Perumal Muthuraja
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Purushothaman Gopinath
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| |
Collapse
|
6
|
Chauhan S, Kumar AS, Swamy KCK. δ-Acetoxy Allenoate as a 5C-Synthon in Domino-Annulation with Sulfamidate Imines: Ready Access to Coumarins. J Org Chem 2023; 88:12432-12444. [PMID: 37602894 DOI: 10.1021/acs.joc.3c01183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
A DMAP-catalyzed sequential benzannulation and lactonization strategy in which δ-acetoxy allenoate functions as a 5C-synthon in its reaction with cyclic sulfamidate imines is reported. This platform delivers π-extended coumarin frameworks under metal-free conditions via allylic elimination followed by Mannich coupling, proton shifts, C-N bond cleavage, and lactonization as key steps. The driving force for this domino reaction is the formation of the diene-ammonium intermediate and O-S bond cleavage. ESI-HRMS has been useful in gaining insights into the reaction pathway.
Collapse
Affiliation(s)
- Sachin Chauhan
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - A Sanjeeva Kumar
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - K C Kumara Swamy
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
| |
Collapse
|
7
|
Khan SA, Kumar AS, Swamy KCK. DBU-Catalyzed Ring Expansion or Ene-amine Formation Involving δ-Acetoxy Allenoates and N-Sulfonyl Hydrazides. Org Lett 2023; 25:3713-3717. [PMID: 37184439 DOI: 10.1021/acs.orglett.3c01166] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
DBU-catalyzed spiro-annulation and concomitant ring expansion/domino reaction of δ-acetoxy allenoates with cycl-2-ene-N-sulfonyl hydrazides afford ring-expanded (5 → 6, 6 → 7, and 7 → 8) products. By contrast, cycl-3-ene/ane-N-sulfonyl hydrazones under similar conditions deliver pyrazole cores with the same allenoate that involves allylic elimination in which δ-acetoxy allenoate serves as 3C-synthon. The key spirocyclic intermediates, as well as dienyl-amine intermediates, are isolated and characterized. An extension to (R)-(-)-carvone-derived sulfonyl hydrazide also led to ring expansion and gave pyrazoloazepine.
Collapse
Affiliation(s)
- Shabbir Ahmed Khan
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - A Sanjeeva Kumar
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - K C Kumara Swamy
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
| |
Collapse
|
8
|
Zhu M, Zhao Y, Li X, Liu B. Asymmetric [5+1] Annulation via C-H Activation/1,4-Rh Migration/Double Bond Shift Using a Transformable Pyridazine Directing Group. Org Lett 2023; 25:1839-1844. [PMID: 36912462 DOI: 10.1021/acs.orglett.3c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
N-Heterocycle-assisted C-H activation/annulation reactions have provided new concepts for the construction and transformation of azacycles. In this work, we disclose a [5+1] annulation reaction using a novel transformable pyridazine directing group (DG). The DG-transformable reaction mode led to the construction of a new heterocyclic ring accompanied by transformation of the original pyridazine directing group via a C-H activation/1,4-Rh migration/double bond shift pathway, affording the skeleton of pyridazino[6,1-b]quinazolines with a good substrate scope under mild conditions. Diverse fused cyclic compounds can be achieved by derivatization of the product. The asymmetric synthesis of the skeleton was also realized to afford the enantiomeric products with good stereoselectivity.
Collapse
Affiliation(s)
- Man Zhu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuyao Zhao
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xingwei Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bingxian Liu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
9
|
Peng M, Wang CS, Chen PP, Roisnel T, Doucet H, Houk KN, Soulé JF. Merging C-H Bond Activation, Alkyne Insertion, and Rearrangements by Rh(III)-Catalysis: Oxindole Synthesis from Nitroarenes and Alkynes. J Am Chem Soc 2023; 145:4508-4516. [PMID: 36802602 DOI: 10.1021/jacs.2c10932] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
We report a Rh(III)-catalyzed ortho-C-H bond functionalization of nitroarenes with 1,2-diarylalkynes and carboxylic anhydrides. The reaction unpredictably affords 3,3-disubstituted oxindoles with the formal reduction of the nitro group under redox-neutral conditions. Besides good functional group tolerance, this transformation allows the preparation of oxindoles with a quaternary carbon stereocenter using nonsymmetrical 1,2-diarylalkynes. This protocol is facilitated by the use of a functionalized cyclopentadienyl (CpTMP*)Rh(III) [CpTMP* = 1-(3,4,5-trimethoxyphenyl)-2,3,4,5-tetramethylcyclopentadienyl] catalyst we developed, which combines an electron-rich character with an elliptical shape. Mechanistic investigations, including the isolation of three rhodacyle intermediates and extensive density functional theory calculations, indicate that the reaction proceeds through nitrosoarene intermediates via a cascade of C-H bond activation─O-atom transfer─[1,2]-aryl shift─deoxygenation─N-acylation.
Collapse
Affiliation(s)
- Marie Peng
- Univ Rennes, CNRS UMR6226, Rennes F-3500, France
| | | | - Pan-Pan Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | | | - Henri Doucet
- Univ Rennes, CNRS UMR6226, Rennes F-3500, France
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | | |
Collapse
|
10
|
Ghosh S, Changotra A, Petrone DA, Isomura M, Carreira EM, Sunoj RB. Role of Noncovalent Interactions in Inducing High Enantioselectivity in an Alcohol Reductive Deoxygenation Reaction Involving a Planar Carbocationic Intermediate. J Am Chem Soc 2023; 145:2884-2900. [PMID: 36695526 DOI: 10.1021/jacs.2c10975] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The involvement of planar carbocation intermediates is generally considered undesirable in asymmetric catalysis due to the difficulty in gaining facial control and their intrinsic stability issues. Recently, suitably designed chiral catalyst(s) have enabled a guided approach of nucleophiles to one of the prochiral faces of carbocations affording high enantiocontrol. Herein, we present the vital mechanistic insights from our comprehensive density functional theory (B3LYP-D3) study on a chiral Ir-phosphoramidite-catalyzed asymmetric reductive deoxygenation of racemic tertiary α-substituted allenylic alcohols. The catalytic transformation relies on the synergistic action of a phosphoramidite-modified Ir catalyst and Bi(OTf)3, first leading to the formation of an Ir-π-allenyl carbocation intermediate through a turn-over-determining SN1 ionization, followed by a face-selective hydride transfer from a Hantzsch ester analogue to yield an enantioenriched product. Bi(OTf)3 was found to promote a significant number of ionic interactions as well as noncovalent interactions (NCIs) with the catalyst and the substrates (allenylic alcohol and Hantzsch ester), thus providing access to a lower energy route as compared to the pathways devoid of Bi(OTf)3. In the nucleophilic addition, the chiral induction was found to depend on the number and efficacy of such key NCIs. The curious case of reversal of enantioselectivity, when the α-substituent of the allenyl alcohol is changed from methyl to cyclopropyl, was identified to originate from a change in mechanism from an enantioconvergent pathway (α-methyl) to a dynamic kinetic asymmetric transformation (α-cyclopropyl). These molecular insights could lead to newer strategies to tame tertiary carbocations in enantioselective reactions using suitable combinations of catalysts and additives.
Collapse
Affiliation(s)
- Supratim Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Avtar Changotra
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - David A Petrone
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland.,Department of Process Research & Development, Merck & Co., Inc., MRL, Rahway, New Jersey 07065, United States
| | - Mayuko Isomura
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Erick M Carreira
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Raghavan B Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
11
|
Singh A, Kumar S, Volla CMR. α-Carbonyl sulfoxonium ylides in transition metal-catalyzed C-H activation: a safe carbene precursor and a weak directing group. Org Biomol Chem 2023; 21:879-909. [PMID: 36562262 DOI: 10.1039/d2ob01835g] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transition metal-catalyzed cross-coupling of sp2 C-H bonds with diazo compounds via carbene migratory insertion represents an efficient strategy for the construction of C-C and C-heteroatom bonds in organic synthesis. Despite the popularity of diazo compounds as coupling partners in C-H activation, they pose serious safety and stability issues due to potential exothermic reactions linked with the release of N2 gas. However, compared with diazo compounds, sulfoxonium ylides are generally crystalline solids, more stable, widely used in industrial scales, and easier/safer to prepare. Therefore, recent years have witnessed an upsurge in employing α-carbonyl sulfoxonium ylides as an alternative carbene surrogate in transition metal-catalyzed C-H activation. Unlike diazo compounds, α-carbonyl sulfoxonium ylides contain inherent potential to serve as a coupling partner as well as a weak directing group. This review will summarize the progress made in both categories of reactions.
Collapse
Affiliation(s)
- Anurag Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Shreemoyee Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
12
|
Shukla RK, Nair AM, Volla CMR. Pd(ii)-catalyzed β- and γ-C-(sp 3)-H dienylation with allenyl acetates. Chem Sci 2023; 14:955-962. [PMID: 36755729 PMCID: PMC9890605 DOI: 10.1039/d2sc05188e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Recent years have seen the emergence of transition metal catalyzed C-H activation as a powerful synthetic tool in organic chemistry. Allenes have fascinated synthetic chemists due to their unique reactivity. While directing group assisted functionalization of C(sp2)-H bonds with allenes is well documented in the literature, their coupling with more challenging aliphatic C(sp3)-H bonds remains elusive. In this regard, we hereby report a Pd(ii) catalyzed 8-aminoquinoline directed aliphatic C(sp3)-H dienylation protocol using allenyl acetates. A variety of carboxylic acids including fatty acids and amino acids were efficiently functionalized at β and γ-positions to afford diversely functionalized 1,3-dienes. Preliminary mechanistic studies revealed the crucial role of the base in the success of the transformation. The reaction proceeds via regioselective 2,3-migratory insertion of the allene with the alkylpalladium(ii) species followed by β-acetoxy elimination.
Collapse
Affiliation(s)
- Rahul K. Shukla
- Department of Chemistry, Indian Institute of Technology BombayPowaiMumbai 400076India
| | - Akshay M. Nair
- Department of Chemistry, Indian Institute of Technology BombayPowaiMumbai 400076India
| | - Chandra M. R. Volla
- Department of Chemistry, Indian Institute of Technology BombayPowaiMumbai 400076India
| |
Collapse
|
13
|
Yu C, Xu Y, Zhang X, Fan X. Selective Synthesis of Pyrazolonyl Spirodihydroquinolines or Pyrazolonyl Spiroindolines under Aerobic or Anaerobic Conditions. Org Lett 2022; 24:9473-9478. [PMID: 36524816 DOI: 10.1021/acs.orglett.2c03952] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Presented herein is a condition-controlled selective synthesis of pyrazolonyl spirodihydroquinolines or pyrazolonyl spiroindolines through formal [5 + 1] or [4 + 1] spiroannulation of 2-alkenylanilines with diazopyrazolones. Mechanistically, the formation of the title products involves initial generation of a pyrazolonyl spiro-fused seven-membered ruthenacycle species serving as a key intermediate through Ru(II)-catalyzed C-H/N-H bonds metalation, carbene formation, and its migratory insertion. When the reaction is carried out under air, the key intermediate undergoes reductive elimination to afford spirodihydroquinoline. When the reaction is run under argon, the key intermediate undergoes protonation and intramolecular nucleophilic addition to furnish spiroindoline. This work provides an atom-economical protocol for the effective functionalization of alkenyl C(sp2)-H bond, allowing rapid and selective assembly of valuable spiroscaffolds with a broad range of substrates.
Collapse
Affiliation(s)
- Caiyun Yu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuanshuang Xu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
14
|
Lu MZ, Goh J, Maraswami M, Jia Z, Tian JS, Loh TP. Recent Advances in Alkenyl sp 2 C-H and C-F Bond Functionalizations: Scope, Mechanism, and Applications. Chem Rev 2022; 122:17479-17646. [PMID: 36240299 DOI: 10.1021/acs.chemrev.2c00032] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alkenes and their derivatives are featured widely in a variety of natural products, pharmaceuticals, and advanced materials. Significant efforts have been made toward the development of new and practical methods to access this important class of compounds by selectively activating the alkenyl C(sp2)-H bonds in recent years. In this comprehensive review, we describe the state-of-the-art strategies for the direct functionalization of alkenyl sp2 C-H and C-F bonds until June 2022. Moreover, metal-free, photoredox, and electrochemical strategies are also covered. For clarity, this review has been divided into two parts; the first part focuses on currently available alkenyl sp2 C-H functionalization methods using different alkene derivatives as the starting materials, and the second part describes the alkenyl sp2 C-F bond functionalization using easily accessible gem-difluoroalkenes as the starting material. This review includes the scope, limitations, mechanistic studies, stereoselective control (using directing groups as well as metal-migration strategies), and their applications to complex molecule synthesis where appropriate. Overall, this comprehensive review aims to document the considerable advancements, current status, and emerging work by critically summarizing the contributions of researchers working in this fascinating area and is expected to stimulate novel, innovative, and broadly applicable strategies for alkenyl sp2 C-H and C-F bond functionalizations in the coming years.
Collapse
Affiliation(s)
- Ming-Zhu Lu
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Jeffrey Goh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Manikantha Maraswami
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhenhua Jia
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie-Sheng Tian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
15
|
Singh A, Shukla RK, Volla CMR. Ru(II)-Catalyzed Regioselective Annulation of 2-Hydroxystyrenes with Allenyl Acetates via Vinylic C–H Activation. Org Lett 2022; 24:8936-8941. [DOI: 10.1021/acs.orglett.2c03192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Anurag Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rahul K. Shukla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chandra M. R. Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
16
|
Sontakke GS, Ghosh C, Pal K, Volla CMR. Regioselective Dichotomy in Ru(II)-Catalyzed C-H Annulation of Aryl Pyrazolidinones with 1,3-Diynes. J Org Chem 2022; 87:14103-14114. [PMID: 36226324 DOI: 10.1021/acs.joc.2c01691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we present a substrate-controlled regiodivergent strategy for the selective synthesis of C3 or C2-alkynylated indoles via ruthenium-catalyzed [3 + 2]-annulation of readily available pyrazolidinones and 1,3-diynes. Remarkably, C3-alkynylated indoles were obtained in good yields when 1,4-diarylbuta-1,3-diynes were employed as the coupling partners. On the other hand, dialkyl-1,3-diynes led to the selective formation of C2-alkynylated indoles. The key features of the strategy are the operationally simple conditions and external-oxidant-free, broad-scope, and substrate-switchable indole synthesis. Scale-up reactions and further transformations expanded the synthetic utility of the protocol.
Collapse
Affiliation(s)
- Geetanjali S Sontakke
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chiranjit Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Kuntal Pal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
17
|
Kumar S, Nair AM, Volla CMR. Dual Photoredox Cobalt Catalyzed [4+1] Annulation and C-H Alkoxylation. Chem Asian J 2022; 17:e202200801. [PMID: 35939065 DOI: 10.1002/asia.202200801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/05/2022] [Indexed: 11/06/2022]
Abstract
Herein, we developed two distinct pyridine N-oxide directed C-H activation protocols to achieve [4+1] annulation and alkoxylation of benzamide derivatives by merging Co-catalysis with visible light photoredox catalysis. The protocols deliver the respective products in good yields under facile conditions at room temperature. The use of cheap photocatalyst coupled with molecular oxygen bypassing the need of stoichiometric oxidants forms the chief highlight of the work. The protocols are scalable and the products could be further modified. Additionally, preliminary studies were carried out to probe the reaction mechanism.
Collapse
Affiliation(s)
- Shreemoyee Kumar
- IIT Bombay: Indian Institute of Technology Bombay, Department of Chemistry, INDIA
| | - Akshay M Nair
- IIT Bombay: Indian Institute of Technology Bombay, Department of Chemistry, INDIA
| | - Chandra M R Volla
- IIT-Bombay, Chemistry, Lab no. 418B, 3rd FLOOR, DEPARTMENT OF CHEMISTRY, INDIAN INSTITUTE OF TECHNOLOGY BOMBAY, Lab no. 418B, 3rd FLOOR, DEPARTMENT OF CHEMISTRY, INDIAN INSTITUTE OF TECHNOLOGY BOMBAY, 400076, POWAI, MUMBAI, INDIA
| |
Collapse
|
18
|
Nagireddy A, Kotipalli R, Nanubolu JB, Sridhar Reddy M. Rhodium-Catalyzed Coordination-Assisted Regioselective and Migratory Three-Point Double Annulation of o-Alkenyl Phenols with Tertiary Propargyl Alcohols. Org Lett 2022; 24:5062-5067. [PMID: 35815845 DOI: 10.1021/acs.orglett.2c01819] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We disclose herein a Rh(III)-catalyzed migratory three-point double annulation of o-alkenyl phenols with propargyl alcohols for de novo construction of naphtho furan derivatives in a regio- and chemoselective manner. The protocol orchestrates two new rings with four new bonds in one operation without the need for any additive. Necessary labeled and control experiments are conducted to elucidate the reaction mechanism. A tertiary hydroxyl group is found to be crucial both for controlling the regioselective insertion of alkyne through chelation with rhodium to form a key spiro cyclic intermediate and for forcing ring expansion via unusual and selective olefin reshuffling, apart from forming an extra (furan) ring. The protocol is scalable and shows tolerance for late stage functionalization of natural products.
Collapse
Affiliation(s)
- Attunuri Nagireddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Ramesh Kotipalli
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Jagadeesh Babu Nanubolu
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Analytical Department, CSIR-IICT, Hyderabad 500007, India
| | - Maddi Sridhar Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|