1
|
Rabiee N, Rabiee M. Wearable Aptasensors. Anal Chem 2024; 96:19160-19182. [PMID: 39604058 DOI: 10.1021/acs.analchem.4c05004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
This Perspective explores the revolutionary advances in wearable aptasensor (WA) technology, which combines wearable devices and aptamer-based detection systems for personalized, real-time health monitoring. The devices leverage the specificity and sensitivity of aptamers to target specific molecules, offering broad applications from continuous glucose tracking to early diagnosis of diseases. The integration of data analytics and artificial intelligence (AI) allows early risk prediction and guides preventive health measures. While challenges in miniaturization, power efficiency, and data security persist, these devices hold significant potential to democratize healthcare and reshape patient-doctor interactions.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Mohammad Rabiee
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran 165543, Iran
| |
Collapse
|
2
|
Khatun S, Samanta S, Sahoo S, Mukherjee I, Maity S, Pradhan A. Bottom-Up Porous Graphene Synthesis and its Applications. Chemistry 2024; 30:e202403386. [PMID: 39492795 DOI: 10.1002/chem.202403386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/26/2024] [Accepted: 11/04/2024] [Indexed: 11/05/2024]
Abstract
Incorporation of regular order pores/holes/defects into semimetalic graphene sheets can tune the band gap up to 1 eV or more introducing semiconducting property and therefore exhibiting promising applications for organic electronics such as field-effect transistors (FETs), molecular sieve membranes, gas sensing, catalysis devices, etc. In this mini review, we focused on bottom-up approaches to introduce periodic homogeneous pores into graphene and nanographene and graphene nanoribbons along with their characteristics and potential applications in various fields.
Collapse
Affiliation(s)
- Sahina Khatun
- Department of Chemistry, Birla Institute of Technology (BIT)-Mesra, Ranchi, Jharkhand, 835215, India
| | - Siddhartha Samanta
- Department of Chemistry, Birla Institute of Technology (BIT)-Mesra, Ranchi, Jharkhand, 835215, India
| | - Satadal Sahoo
- Department of Chemistry, Birla Institute of Technology (BIT)-Mesra, Ranchi, Jharkhand, 835215, India
| | - Ishita Mukherjee
- Department of Chemistry, Birla Institute of Technology (BIT)-Mesra, Ranchi, Jharkhand, 835215, India
| | - Sanhita Maity
- Department of Applied Sciences, Amity University, Jharkhand, India
| | - Anirban Pradhan
- Department of Chemistry, Birla Institute of Technology (BIT)-Mesra, Ranchi, Jharkhand, 835215, India
| |
Collapse
|
3
|
Zhao Q, Nishihara H, Crespo-Otero R, Di Tommaso D. Unveiling Carbon Cluster Coating in Graphene CVD on MgO: Combining Machine Learning Force field and DFT Modeling. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53231-53241. [PMID: 39302157 PMCID: PMC11450684 DOI: 10.1021/acsami.4c11398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
In this study, we investigate the behavior of carbon clusters (Cn, where n ranges from 16 to 26) supported on the surface of MgO. We consider the impact of doping with common impurities (such as Si, Mn, Ca, Fe, and Al) that are typically found in ores. Our approach combines density functional theory calculations with machine learning force field molecular dynamics simulations. It is found that the C21 cluster, featuring a core-shell structure composed of three pentagons isolated by three hexagons, demonstrates exceptional stability on the MgO surface and behaves as an "enhanced binding agent" on MgO-doped surfaces. The molecular dynamics trajectories reveal that the stable C21 coating on the MgO surface exhibits less mobility compared to other sizes Cn clusters and the flexible graphene layer on MgO. Furthermore, this stability persists even at temperatures up to 1100K. The analysis of the electron localization function and potential function of Cn on MgO reveals the high localization electron density between the central carbon of the C21 ring and the MgO surface. This work proposes that the C21 island serves as a superstable and less mobile precursor coating on MgO surfaces. This explanation sheds light on the experimental defects observed in graphene products, which can be attributed to the reduced mobility of carbon islands on a substrate that remains frozen and unchanged.
Collapse
Affiliation(s)
- Qi Zhao
- Department
of Chemistry, Queen Mary University of London, London E1 4NS, U.K.
| | - Hirotomo Nishihara
- Institute
of Multidisciplinary Research for Advance Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
- Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1
Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | | | - Devis Di Tommaso
- Department
of Chemistry, Queen Mary University of London, London E1 4NS, U.K.
- Digital
Environment Research Institute, Queen Mary
University of London, Empire House, London E1
1HH, U.K.
| |
Collapse
|
4
|
Li W, Liang F, Sun X, Zheng K, Liu R, Yuan H, Cheng S, Wang J, Cheng Y, Huang K, Wang K, Yang Y, Yang F, Tu C, Mao X, Yin W, Cai A, Wang X, Qi Y, Liu Z. Graphene-skinned alumina fiber fabricated through metalloid-catalytic graphene CVD growth on nonmetallic substrate and its mass production. Nat Commun 2024; 15:6825. [PMID: 39122739 PMCID: PMC11316083 DOI: 10.1038/s41467-024-51118-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Graphene growth on widely used dielectrics/insulators via chemical vapor deposition (CVD) is a strategy toward transfer-free applications of CVD graphene for the realization of advanced composite materials. Here, we develop graphene-skinned alumina fibers/fabrics (GAFs/GAFFs) through graphene CVD growth on commercial alumina fibers/fabrics (AFs/AFFs). We reveal a vapor-surface-solid growth model on a non-metallic substrate, which is distinct from the well-established vapor-solid model on conventional non-catalytic non-metallic substrates, but bears a closer resemblance to that observed on catalytic metallic substrates. The metalloid-catalytic growth of graphene on AFs/AFFs resulted in reduced growth temperature (~200 °C lower) and accelerated growth rate (~3.4 times faster) compared to that obtained on a representative non-metallic counterpart, quartz fiber. The fabricated GAFF features a wide-range tunable electrical conductivity (1-15000 Ω sq-1), high tensile strength (>1.5 GPa), lightweight, flexibility, and a hierarchical macrostructure. These attributes are inherited from both graphene and AFF, making GAFF promising for various applications including electrical heating and electromagnetic interference shielding. Beyond laboratory level preparation, the stable mass production of large-scale GAFF has been achieved through a home-made roll-to-roll system with capacity of 468-93600 m2/year depending on product specifications, providing foundations for the subsequent industrialization of this material, enabling its widespread adoption in various industries.
Collapse
Affiliation(s)
- Wenjuan Li
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Fushun Liang
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Xiucai Sun
- Beijing Graphene Institute (BGI), Beijing, China
| | - Kangyi Zheng
- Beijing Graphene Institute (BGI), Beijing, China
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, China
| | - Ruojuan Liu
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Hao Yuan
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Shuting Cheng
- Beijing Graphene Institute (BGI), Beijing, China
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, China
| | - Jingnan Wang
- Beijing Graphene Institute (BGI), Beijing, China
| | - Yi Cheng
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Kewen Huang
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Kun Wang
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yuyao Yang
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Fan Yang
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Ce Tu
- Beijing Graphene Institute (BGI), Beijing, China
| | - Xinyu Mao
- Beijing Graphene Institute (BGI), Beijing, China
| | - Wanjian Yin
- Beijing Graphene Institute (BGI), Beijing, China
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, China
| | - Ali Cai
- Beijing Graphene Institute (BGI), Beijing, China
| | - Xiaobai Wang
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Yue Qi
- Beijing Graphene Institute (BGI), Beijing, China.
| | - Zhongfan Liu
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Beijing Graphene Institute (BGI), Beijing, China.
| |
Collapse
|
5
|
Pirabul K, Zhao Q, Pan ZZ, Liu H, Itoh M, Izawa K, Kawai M, Crespo-Otero R, Di Tommaso D, Nishihara H. Silicon Radical-Induced CH 4 Dissociation for Uniform Graphene Coating on Silica Surface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306325. [PMID: 38032161 DOI: 10.1002/smll.202306325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/05/2023] [Indexed: 12/01/2023]
Abstract
Due to the manufacturability of highly well-defined structures and wide-range versatility in its microstructure, SiO2 is an attractive template for synthesizing graphene frameworks with the desired pore structure. However, its intrinsic inertness constrains the graphene formation via methane chemical vapor deposition. This work overcomes this challenge by successfully achieving uniform graphene coating on a trimethylsilyl-modified SiO2 (denote TMS-MPS). Remarkably, the onset temperature for graphene growth dropped to 720 °C for the TMS-MPS, as compared to the 885 °C of the pristine SiO2. This is found to be mainly from the Si radicals formed from the decomposition of the surface TMS groups. Both experimental and computational results suggest a strong catalytic effect of the Si radicals on the CH4 dissociation. The surface engineering of SiO2 templates facilitates the synthesis of high-quality graphene sheets. As a result, the graphene-coated SiO2 composite exhibits a high electrical conductivity of 0.25 S cm-1. Moreover, the removal of the TMP-MPS template has released a graphene framework that replicates the parental TMS-MPS template on both micro- and nano- scales. This study provides tremendous insights into graphene growth chemistries as well as establishes a promising methodology for synthesizing graphene-based materials with pre-designed microstructures and porosity.
Collapse
Affiliation(s)
- Kritin Pirabul
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Qi Zhao
- Department of Chemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Zheng-Ze Pan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Hongyu Liu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Mutsuhiro Itoh
- Fuji Silysia Chemical Ltd., 2-1846 Kozoji-cho, Kasugai, Aichi, 487-0013, Japan
| | - Kenichi Izawa
- Fuji Silysia Chemical Ltd., 2-1846 Kozoji-cho, Kasugai, Aichi, 487-0013, Japan
| | - Makoto Kawai
- Fuji Silysia Chemical Ltd., 2-1846 Kozoji-cho, Kasugai, Aichi, 487-0013, Japan
| | - Rachel Crespo-Otero
- Department of Chemistry, University College London, 2020 Gordon St., London, WC1H 0AJ, UK
| | - Devis Di Tommaso
- Department of Chemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Hirotomo Nishihara
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| |
Collapse
|
6
|
Yamamoto M, Goto S, Tang R, Yamazaki K. Toward three-dimensionally ordered nanoporous graphene materials: template synthesis, structure, and applications. Chem Sci 2024; 15:1953-1965. [PMID: 38332834 PMCID: PMC10848746 DOI: 10.1039/d3sc05022j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/23/2023] [Indexed: 02/10/2024] Open
Abstract
Precise template synthesis will realize three-dimensionally ordered nanoporous graphenes (NPGs) with a spatially controlled seamless graphene structure and fewer edges. These structural features result in superelastic nature, high electrochemical stability, high electrical conductivity, and fast diffusion of gases and ions at the same time. Such innovative 3D graphene materials are conducive to solving energy-related issues for a better future. To further improve the attractive properties of NPGs, we review the template synthesis and its mechanism by chemical vapor deposition of hydrocarbons, analysis of the nanoporous graphene structure, and applications in electrochemical and mechanical devices.
Collapse
Affiliation(s)
- Masanori Yamamoto
- Department of Chemical Science and Engineering, Tokyo Institute of Technology Ookayama 2-12-1 Meguro Tokyo 152-8550 Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University 2-1-1 Katahira, Aoba Sendai 980-8577 Japan
| | - Shunsuke Goto
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University 2-1-1 Katahira, Aoba Sendai 980-8577 Japan
| | - Rui Tang
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University 2-1-1 Katahira, Aoba Sendai 980-8577 Japan
| | - Kaoru Yamazaki
- RIKEN Center for Advanced Photonics, RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Institute for Materials Research, Tohoku University 2-1-1 Katahira, Aoba Sendai 980-8577 Japan
| |
Collapse
|
7
|
Yamazaki K, Goto S, Yoshino S, Gubarevich A, Yoshida K, Kato H, Yamamoto M. Surface defect healing in annealing from nanoporous carbons to nanoporous graphenes. Phys Chem Chem Phys 2023. [PMID: 38019669 DOI: 10.1039/d3cp04921c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Nanoporous graphene (NPG) materials have the pronounced electrochemical stability of the seamless graphene structures developed over the 3D space. We revisited the Raman spectra of nanoporous carbons (NPCs) synthesized using θ-/γ-Al2O3 templates and NPGs converted from NPCs by annealing at 1800 °C to identify the type and density of defects. We found that both the NPCs and NPGs mostly consist of single-layered graphene with a few single vacancies and Stone-Wales defects. The density of vacancy defect per hexagon in the graphene sheet is estimated to be 10-2 for NPCs, while the annealing reduced the value to 10-3-10-4 for NPGs. This supports the outstanding chemical and electrochemical stability of the novel porous carbon materials.
Collapse
Affiliation(s)
- Kaoru Yamazaki
- RIKEN Center for Advanced Photonics, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Shunsuke Goto
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Shunya Yoshino
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Anna Gubarevich
- Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Katsumi Yoshida
- Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Hideki Kato
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Masanori Yamamoto
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro, Tokyo 152-8550, Japan.
| |
Collapse
|
8
|
Yamamoto M, Takamura Y, Kokubo Y, Urushihara M, Horiuchi N, Dai W, Hayasaka Y, Kita E, Takao K. Solid-State Schikorr Reaction from Ferrous Chloride to Magnetite with Hydrogen Evolution as the Kinetic Bottleneck. Inorg Chem 2023; 62:14580-14589. [PMID: 37638697 DOI: 10.1021/acs.inorgchem.3c01676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
The selective formation of meta-stable Fe3O4 from ferrous sources by suppressing its oxidative conversion to the most stable hematite (α-Fe2O3) is challenging under oxidative conditions for solid-state synthesis. In this work, we investigated the conversion of iron(II) chloride (FeCl2) to magnetite (Fe3O4) under inert atmosphere in the presence of steam, and the obtained oxides were analyzed by atomic-resolution TEM, 57Fe Mössbauer spectroscopy, and the Verwey transition temperature (Tv). The reaction proceeded in two steps, with H2O as the oxide source in the initial step and as an oxidant in the second step. The initial hydrolysis occurred at temperatures higher than 120 °C to release gaseous HCl, via substituting lattice chloride Cl- with oxide O2-, to give iron oxide intermediates. In the first step, the construction of the intermediate oxides was not topotactic. The second step as a kinetic bottleneck occurred at temperatures higher than 350 °C to generate gaseous H2 through the oxidation of FeII by H+. A substantially large kinetic isotope effect (KIE) was observed for the second step at 500 °C, and this indicates the rate-determining step is the hydrogen evolution. Quantitative analysis of evolved H2 revealed that full conversion of ferrous chloride to magnetite at 500 °C was followed by additional oxidation of the outer sphere of magnetite to give a Fe2O3 phase, as supported by X-ray photoelectron spectroscopy (XPS), and the outer phase confined the conductive magnetite phase within the insulating layers, enabling kinetic control of magnetite synthesis. As such, the reaction stopped at meta-stable magnetite with an excellent saturation magnetization (σs) of 86 emu g-1 and Tv > 120 K without affording the thermodynamically stable α-Fe2O3 as the major final product. The study also discusses the influence of parameters such as reaction temperature, initial grain size of FeCl2, the extent of hydration, and partial pressure of H2O.
Collapse
Affiliation(s)
- Masanori Yamamoto
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Yota Takamura
- Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Yoshiaki Kokubo
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Makoto Urushihara
- Innovation Center, Mitsubishi Materials Corporation, 1002-14 Mukohyama, Naka, Ibaraki 311-0102, Japan
| | - Nobutake Horiuchi
- Innovation Center, Mitsubishi Materials Corporation, 1002-14 Mukohyama, Naka, Ibaraki 311-0102, Japan
| | - Wenbin Dai
- Innovation Center, Mitsubishi Materials Corporation, 1002-14 Mukohyama, Naka, Ibaraki 311-0102, Japan
| | - Yuichiro Hayasaka
- The Electron Microscopy Center, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Eiji Kita
- Institute of Applied Physics, University of Tsukuba, Tsukuba 305-8573, Japan
| | - Koichiro Takao
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| |
Collapse
|
9
|
Muthuperiyanayagam A, Nabi AG, Zhao Q, Di Tommaso D. Adsorption, activation, and conversion of carbon dioxide on small copper-tin nanoclusters. Phys Chem Chem Phys 2023; 25:13429-13441. [PMID: 37144396 DOI: 10.1039/d3cp00477e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Carbon dioxide (CO2) conversion to value-added chemicals is an attractive solution to reduce globally accelerating CO2 emissions. Among the non-precious and abundant metals tested so far, copper (Cu) is one of the best electrocatalysts to convert CO2 into more than thirty different hydrocarbons and alcohols. However, the selectivity for desired products is often too low. We present a computational investigation of the effects of nanostructuring, doping, and support on the activity and selectivity of Cu-Sn catalysts. Density functional theory calculations were conducted to explore the possibility of using small Cu-Sn clusters, Cu4-nSnn (n = 0-4), isolated or supported on graphene and γ-Al2O3, to activate CO2 and convert it to carbon monoxide (CO) and formic acid (HCOOH). First, a detailed analysis of the structure, stability, and electronic properties of Cu4-nSnn clusters and their ability to absorb and activate CO2 was considered. Then, the kinetics of the gas phase CO2 direct dissociation on Cu4-nSnn to generate CO was determined. Finally, the mechanism of electrocatalytic CO2 reduction to CO and HCOOH on Cu4-nSnn, Cu4-nSnn/graphene and Cu4-nSnn/γ-Al2O3 was computed. The selectivity towards the competitive electrochemical hydrogen evolution reaction on these catalysts was also considered. The Cu2Sn2 cluster suppresses the hydrogen evolution reaction and is highly selective towards CO, if unsupported, or HCOOH if supported on graphene. This study demonstrates that the Cu2Sn2 cluster is a potential candidate for the electrocatalytic conversion of the CO2 molecule. Moreover, it identifies insightful structure-property relationships in Cu-based nanocatalysts, highlighting the influence of composition and catalyst support on CO2 activation.
Collapse
Affiliation(s)
- Akshayini Muthuperiyanayagam
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Azeem Ghulam Nabi
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
- Department of Physics and Applied Mathematics, Pakistan Institute of Engineering & Applied Sciences, P.O. Nilore, Islamabad, 45650, Pakistan
- Department of Physics, University of Gujrat, Jalalpur Jattan Road, Gujrat, Pakistan
| | - Qi Zhao
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Devis Di Tommaso
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
10
|
Zhao Q, Yamamoto M, Yamazaki K, Nishihara H, Crespo-Otero R, Di Tommaso D. The carbon chain growth during the onset of CVD graphene formation on γ-Al 2O 3 is promoted by unsaturated CH 2 ends. Phys Chem Chem Phys 2022; 24:23357-23366. [PMID: 36165844 DOI: 10.1039/d2cp01554d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemical vapor deposition of methane onto a template of alumina (Al2O3) nanoparticles is a prominent synthetic strategy of graphene meso-sponge, a new class of nano porous carbon materials consisting of single-layer graphene walls. However, the elementary steps controlling the early stages of graphene growth on Al2O3 surfaces are still not well understood. In this study, density functional theory calculations provide insights into the initial stages of graphene growth. We have modelled the mechanism of CH4 dissociation on the (111), (110), (100), and (001) γ-Al2O3 surfaces. Subsequently, we have considered the reaction pathway leading to the formation of a C6 ring. The γ-Al2O3(110) and γ-Al2O3(100) are both active for CH4 dissociation, but the (100) surface has higher catalytic activity towards the carbon growth reaction. The overall mechanism involves the formation of the reactive intermediate CH2* that then can couple to form CnH2n* (n = 2-6) intermediates with unsaturated CH2 ends. The formation of these species, which are not bound to the surface-active sites, promotes the sustained carbon growth in a nearly barrierless process. Also, the short distance between terminal carbon atoms leads to strong interactions, which might lead to the high activity between unsaturated CH2* of the hydrocarbon chain. Analysis of the electron localization and geometries of the carbon chains reveals the formation of C-Al-σ bonds with the chain growing towards the vacuum rather than C-Al-π bonds covering the γ-Al2O3(100) surface. This growth behaviour prevents catalyst poisoning during the initial stage of graphene nucleation.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| | - Masanori Yamamoto
- Advanced Institute for Materials Research (WPI-AIMR)/Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Kaoru Yamazaki
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Hirotomo Nishihara
- Advanced Institute for Materials Research (WPI-AIMR)/Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Rachel Crespo-Otero
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| | - Devis Di Tommaso
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
11
|
Magnetically Recoverable Biomass-Derived Carbon-Aerogel Supported ZnO (ZnO/MNC) Composites for the Photodegradation of Methylene Blue. Catalysts 2022. [DOI: 10.3390/catal12091073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hydrothermally assisted magnetic ZnO/Carbon nanocomposites were prepared using the selective biowaste of pomelo orange. Initially, the carbon aerogel (CA) was prepared hydrothermally followed by a freeze-drying method. Furthermore, the iron oxide nanoparticles were deposited onto the surface of carbon using the co-precipitation method and we obtained magnetic carbon nanocomposite, i.e., Fe3O4/C (MNC). Moreover, the ZnO photocatalysts were incorporated onto the surface of MNC composites using a hydrothermal process, and we obtained ZnO/MNC composites. The ZnO/MNC (55%), ZnO/MNC (65%) and ZnO/MNC (75%) composites were prepared by a similar experimental method in order to change the weight ratio of ZnO NPs. Using a similar synthetic procedure, the standard ZnO and Fe3O4 nanoparticles were prepared without the addition of CA. The experimental results were derived from several analytical techniques, such as: X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman and diffuse reflectance spectroscopy (DRS-UV). The synthesized carbon, ZnO, Fe3O4, ZnO/MNC (55%), ZnO/MNC (65%) and ZnO/MNC (75%) composites were examined through the photocatalytic degradation of methylene blue (MB) under visible-light irradiation (VLI). The obtained results revealed that the composites were more active than carbon, ZnO and Fe3O4. In particular, the ZnO/MNC (75%) composites showed more activity than the rest of the composites. Furthermore, the recycling abilities of the prepared ZnO/MNC (75%) composites were examined through the degradation of MB under identical conditions and the activity remained constant up to the fifth cycle. The synthetic procedure and practical applications proposed here can be used in chemical industries, biomedical fields and energy applications.
Collapse
|