1
|
Ma C, Guo JF, Xu SS, Mei TS. Recent Advances in Asymmetric Organometallic Electrochemical Synthesis (AOES). Acc Chem Res 2025; 58:399-414. [PMID: 39829007 DOI: 10.1021/acs.accounts.4c00656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
ConspectusIn recent years, our research group has dedicated significant effort to the field of asymmetric organometallic electrochemical synthesis (AOES), which integrates electrochemistry with asymmetric transition metal catalysis. On one hand, we have rationalized that organometallic compounds can serve as molecular electrocatalysts (mediators) to reduce overpotentials and enhance both the reactivity and selectivity of reactions. On the other hand, the conditions for asymmetric transition metal catalysis can be substantially improved through electrochemistry, enabling precise modulation of the transition metal's oxidation state by controlling electrochemical potentials and regulating the electron transfer rate via current adjustments. This synergistic approach addresses key challenges inherent in traditional asymmetric transition metal catalysis, particularly those related to the use of redox-active chemical reagents. Furthermore, the redox potentials of molecular electrocatalysts can be conveniently tuned by modifying their ligands, thereby governing the reaction regioselectivity and stereoselectivity. As a result, the AOES has emerged as a powerful and promising tool for the synthesis of chiral compounds.In this Account, we summarize and contextualize our recent efforts in the field of AOES. Our primary strategy involves leveraging the controllability of electrochemical potential and current to regulate the oxidation state of organometallics, thereby facilitating the desired reactions. An efficient asymmetric synthesis platform was established under mild conditions, significantly reducing the reliance on chemical redox reagents. Our research has been systematically categorized into three sections based on distinct electrolysis modes: asymmetric transition metal catalysis combined with anodic oxidation, cathodic reduction, and paired electrolysis. In each section, we highlight our innovative discoveries tailored to the unique characteristics of the respective electrolysis modes.In many transformations, transition metal-catalyzed reactions involving traditional chemical redox reagents and those utilizing electrochemistry exhibit similar reactivities. However, we also observed notable differences in certain cases. These findings include the following: (1) Enhanced efficiency in asymmetric electrochemical synthesis: for instance, the Rh-catalyzed enantioselective electrochemical functionalization of C-H bonds demonstrates superior efficiency. (2) Expanded scope of transformations: certain transformations, previously challenging in traditional transition metal catalysis, can be achieved through electrochemistry due to the tunability of redox potentials. A notable example is the enantioselective reductive coupling of aryl chlorides, which significantly expands the range of accessible transformations. Additionally, our mechanistic studies explore unique techniques intrinsic to electrochemistry, such as controlled potential electrolysis experiments, the impact of electrode materials on catalyst performance, and cyclic voltammetry studies. These investigations provide a more intuitive understanding of the behavior of metal catalysts through the study of electrochemical mechanisms, which can also guide the design of new catalytic systems.The advancements in this field offer a robust platform for environmentally friendly and sustainable selective asymmetric transformations. By integrating electrochemistry with transition metal catalysis, we have developed a versatile approach for organic synthesis that not only enhances the efficiency and selectivity of reactions but also reduces the environmental impact. We anticipate that this Account will stimulate further research and innovation in the realm of AOES, leading to the discovery of new catalytic systems and the development of more sustainable synthetic methodologies.
Collapse
Affiliation(s)
- Cong Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jian-Feng Guo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shi-Shuo Xu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
2
|
Xiao F, Xu X, Zhang J, Chen X, Ruan X, Wei Q, Zhang X, Huang Q. Rhodaelectro-Catalyzed Synthesis of Pyrano[3,4- b]indol-1(9 H)-ones via the Double Dehydrogenative Heck Reaction between Indole-2-carboxylic Acids and Alkenes. J Org Chem 2024; 89:17550-17561. [PMID: 39531595 DOI: 10.1021/acs.joc.4c02271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A rhodaelectro-catalyzed double dehydrogenative Heck reaction of indole-2-carboxylic acids with alkenes has been developed for the synthesis of pyrano[3,4-b]indol-1(9H)-ones. The weakly coordinating carboxyl group is utilized twice as a directing group to activate the C-H bonds throughout the reaction. This reaction precedes an acceptorless dehydrogenation under exogenous oxidant-free conditions in an undivided cell with a constant current.
Collapse
Affiliation(s)
- Fengyi Xiao
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Xinlu Xu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Jiaqi Zhang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Ximan Chen
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Xin Ruan
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Qi Wei
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Xiaofeng Zhang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Qiufeng Huang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| |
Collapse
|
3
|
Kushwaha P, Saxena A, von Münchow T, Dana S, Saha B, Ackermann L. Metallaelectro-catalyzed alkyne annulations via C-H activations for sustainable heterocycle syntheses. Chem Commun (Camb) 2024; 60:12333-12364. [PMID: 39370984 PMCID: PMC11456994 DOI: 10.1039/d4cc03871a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
Alkyne annulation represents a versatile and powerful strategy for the assembly of structurally complex compounds. Recent advances successfully enabled electrocatalytic alkyne annulations, significantly expanding the potential applications of this promising technique towards sustainable synthesis. The metallaelectro-catalyzed C-H activation/annulation stands out as a highly efficient approach that leverages electricity, combining the benefits of electrosynthesis with the power of transition-metal catalyzed C-H activation. Particularly attractive is the pairing of the electro-oxidative C-H activation with the valuable hydrogen evolution reaction (HER), thereby addressing the growing demand for green energy solutions. Herein, we provide an overview of the evolution of electrochemical C-H annulations with alkynes for the construction of heterocycles, with a topical focus on the underlying mechanism manifolds.
Collapse
Affiliation(s)
- Preeti Kushwaha
- Amity Institute of Click chemistry Research & Studies, Amity University, Noida, 201303, Uttar Pradesh, India
- Amity Institute of Biotechnology, Amity University, Noida, 201303, Uttar Pradesh, India.
| | - Anjali Saxena
- Amity Institute of Biotechnology, Amity University, Noida, 201303, Uttar Pradesh, India.
| | - Tristan von Münchow
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, 37077, Göttingen, Germany.
| | - Suman Dana
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, 37077, Göttingen, Germany.
| | - Biswajit Saha
- Amity Institute of Biotechnology, Amity University, Noida, 201303, Uttar Pradesh, India.
| | - Lutz Ackermann
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
4
|
Mukherjee D, Karmakar I, Brahmachari G. Electro- and Mechanochemical Strategy as a Dual Synthetic Approach for Biologically Relevant 3-Nitro-imidazo-[1,2- a]pyridines. J Org Chem 2024; 89:12071-12084. [PMID: 39145592 DOI: 10.1021/acs.joc.4c00881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
We herein disclose a dual synthetic approach involving electrochemical and mechanochemical strategies for diversely functionalized 3-nitro-2-aryl-immidazo[1,2-a]pyridines. Both methods offer a practical and straightforward alternative route for accessing this important class of biologically promising nitrogen-containing heterocycles. Significant advantages of the newly developed methods include mild and energy-efficient reaction conditions, avoidance of transition metal catalysts, external heating and additional oxidants, shorter reaction times, good to excellent yields, broad substrate scope, gram-scale applicability, operational simplicity, and eco-friendliness. Furthermore, a synthetic application was extended by successfully reducing synthesized 3-nitro-2-aryl-immidazo[1,2-a]pyridines to their corresponding amino derivatives.
Collapse
Affiliation(s)
- Debojyoti Mukherjee
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan, West Bengal 731 235, India
| | - Indrajit Karmakar
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan, West Bengal 731 235, India
| | - Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan, West Bengal 731 235, India
| |
Collapse
|
5
|
Karmakar I, Brahmachari G. Electrorearranged Difunctionalization of 4-Hydroxy-α-benzopyrones. J Org Chem 2024; 89:10524-10537. [PMID: 39028998 DOI: 10.1021/acs.joc.4c00734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
We herein report the exploration of an electrosynthetic strategy as a highly efficient and straightforward alternative protocol for accessing diversely substituted and biologically promising alkyl 2-hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carboxylates through an electrorearranged difunctionalization of 4-hydroxycoumarins, involving the singlet oxygen insertion from molecular oxygen, at ambient temperature. The present method is notably more advantageous than the previously reported photochemical conversion regarding yields and reaction times, substrate scope and functional group tolerability, operational simplicity, and scalability.
Collapse
Affiliation(s)
- Indrajit Karmakar
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan-731 235, West Bengal, India
| | - Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan-731 235, West Bengal, India
| |
Collapse
|
6
|
Li Y, Xu J, Oliveira JC, Scheremetjew A, Ackermann L. Electrochemical Enantioselective C-H Annulation by Achiral Rhodium(III)/Chiral Brønsted Base Domino Catalysis. ACS Catal 2024; 14:8160-8167. [PMID: 38868099 PMCID: PMC11165455 DOI: 10.1021/acscatal.4c01886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 06/14/2024]
Abstract
Rhodium(III)-catalyzed enantioselective C-H activation has emerged as a powerful tool for assembling enabling chiral molecules. However, this approach is significantly hampered by the cumbersome synthetic routes for preparing chiral rhodium catalysts. In sharp contrast, we herein report on an electrochemical domino catalysis system that exploits an achiral Cp*-rhodium catalyst along with an easily accessible chiral Brønsted base for an enantioselective C-H activation/annulation reaction of alkenes by benzoic acids. Our strategy offers an environmentally benign and most user-friendly approach for assembling synthetically useful chiral phthalides in good enantioselectivity, employing electricity as the sustainable oxidant.
Collapse
Affiliation(s)
- Yanjun Li
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Jiawei Xu
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - João C.
A. Oliveira
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Alexej Scheremetjew
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
7
|
Meher R, Pan SC. Organocatalytic Asymmetric Dearomative Spirocyclization/Oxa-Michael Addition Sequence: Synthesis of Polycyclic Tetralones. Org Lett 2024; 26:3179-3183. [PMID: 38568111 DOI: 10.1021/acs.orglett.4c00781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Herein, an organocatalytic asymmetric dearomative spirocyclization/oxa-Michael addition sequence with a newly designed substrate having two naphthol motifs has been developed. The reaction proceeds through in situ chiral vinylidene ortho-quinone methide (VQM) intermediate formation, dearomative spirocyclization of naphthol, and an oxa-Michael addition reaction. The densely functionalized tetralone products were formed in high yields with high diastereo- and enantioselectivities.
Collapse
Affiliation(s)
- Ramji Meher
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Subhas Chandra Pan
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| |
Collapse
|
8
|
Zhou G, Zhou T, Jiang AL, Qian PF, Li JY, Jiang BY, Chen ZJ, Shi BF. Electrooxidative Rhodium(III)/Chiral Carboxylic Acid-Catalyzed Enantioselective C-H Annulation of Sulfoximines with Alkynes. Angew Chem Int Ed Engl 2024; 63:e202319871. [PMID: 38289019 DOI: 10.1002/anie.202319871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Indexed: 02/21/2024]
Abstract
The combination of achiral Cp*Rh(III) with chiral carboxylic acids (CCAs) represents an efficient catalytic system in transition metal-catalyzed enantioselective C-H activation. However, this hybrid catalysis is limited to redox-neutral C-H activation reactions and the adopt to oxidative enantioselective C-H activation remains elusive and pose a significant challenge. Herein, we describe the development of an electrochemical Cp*Rh(III)-catalyzed enantioselective C-H annulation of sulfoximines with alkynes enabled by chiral carboxylic acid (CCA) in an operationally friendly undivided cell at room temperature. A broad range of enantioenriched 1,2-benzothiazines are obtained in high yields with excellent enantioselectivities (up to 99 % yield and 98 : 2 er). The practicality of this method is demonstrated by scale-up reaction in a batch reactor with external circulation. A crucial chiral Cp*Rh(III) intermediate is isolated, characterized, and transformed, providing rational support for a Rh(III)/Rh(I) electrocatalytic cycle.
Collapse
Affiliation(s)
- Gang Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Tao Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China
| | - Ao-Lian Jiang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Pu-Fan Qian
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Jun-Yi Li
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Bo-Yang Jiang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Zi-Jia Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, 314001, Jiaxing, Zhejiang, China
| |
Collapse
|
9
|
Bi H, Chu J, Zhao XL, Wang SR. Ni-Catalyzed 1,5-Sigmatropic Ester Shift on Cyclopentadiene Rings: Regioselective Conversion of 5,5-Disubstituted Cyclopentadienes to CH 2-Cyclopentadienes. Org Lett 2024; 26:1437-1441. [PMID: 38345600 DOI: 10.1021/acs.orglett.4c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Described herein is a nickel(II)-catalyzed regioselective rearrangement of 5,5-disubstituted cyclopentadienes to fully functionalized CH2-cyclopentadienes via successive 1,5-sigmatropic shifts of the ester group on the quaternary carbon and hydrogen under mild basic conditions. The obtained CH2-cyclopentadienes were also readily applied in the preparation of highly functionalized dibenzo[e,g]azulene derivatives in two steps.
Collapse
Affiliation(s)
- Hongyan Bi
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Jiaxin Chu
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Xiao-Li Zhao
- Shanghai Key Laboratory of Green Chemistry & Chemical Processes, East China Normal University, Shanghai 200062, China
- State Key Laboratory of Petroleum Molecular & Process Engineering, East China Normal University, Shanghai 200062, China
| | - Sunewang R Wang
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| |
Collapse
|
10
|
Shi Z, Dong S, Liu T, Wang WZ, Li N, Yuan Y, Zhu J, Ye KY. Electrochemical cascade migratory versus ortho-cyclization of 2-alkynylbenzenesulfonamides. Chem Sci 2024; 15:2827-2832. [PMID: 38404399 PMCID: PMC10882495 DOI: 10.1039/d3sc05229j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/10/2024] [Indexed: 02/27/2024] Open
Abstract
Efficient control over several possible reaction pathways of free radicals is the chemical basis of their highly selective transformations. Among various competing reaction pathways, sulfonimidyl radicals generated from the electrolysis of 2-alkynylbenzenesulfonamides undergo cascade migratory or ortho-cyclization cyclization selectively. It is found that the incorporation of an extra 2-methyl substituent biases the selective migration of the acyl- over vinyl-linker of the key spirocyclic cation intermediate and thus serves as an enabling handle to achieve the synthetically interesting yet under-investigated cascade migratory cyclization of spirocyclic cations.
Collapse
Affiliation(s)
- Zhaojiang Shi
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Shicheng Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Ting Liu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Wei-Zhen Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Nan Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Yaofeng Yuan
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Jun Zhu
- School of Science and Engineering, The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Ke-Yin Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University Fuzhou 350108 China
| |
Collapse
|
11
|
Yavari I, Shaabanzadeh S, Ghafouri K. Scalable Diastereoselective Electrosynthesis of Spiro[benzofuran-2,2'-furan]-3-ones. J Org Chem 2024; 89:425-432. [PMID: 38085534 DOI: 10.1021/acs.joc.3c02186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Spirobenzofuran scaffolds, because of their three-dimensional structure, are incorporated into several valuable natural products and drug candidate molecules. Herein, with the assistance of electrosynthesis, we introduce a novel electrochemical approach for achieving spirobenzofurans in a user-friendly and operationally simple undivided cell setup under constant current. This metal-catalyst-free electrochemical procedure afforded spiro[benzofuran-2,2'-furan]-3-ones with high diastereoselectivity. Compatibility with gram-scale synthesis along with the convenient accessibility of reaction instruments and starting materials collectively raised the importance of this protocol compared to previous challenging methods. Furthermore, mechanistic cognizance of this reaction is obtained by the investigation of the cyclic voltammetry spectra of reactants.
Collapse
Affiliation(s)
- Issa Yavari
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran 1463694571, Iran
| | - Sina Shaabanzadeh
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran 1463694571, Iran
| | - Kiyana Ghafouri
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran 1463694571, Iran
| |
Collapse
|
12
|
Lu L, Huang H, Yang S, Bai J, Zhou Y, Xiao Q. Palladium-Catalyzed Intermolecular Dearomatization Annulation Cascade Reaction of Furans for Stereoselective Access to 2,5-Dihydrofurans. J Org Chem 2023; 88:14435-14444. [PMID: 37768003 DOI: 10.1021/acs.joc.3c01449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
A novel palladium-catalyzed intermolecular dearomatization of furans with alkynes via a three-component formal [3 + 2] spiroannulation/allylic substitution cascade reaction has been successfully developed for the stereoselective assembly of spiro 2,5-dihydrofuran frameworks. High step economy and efficacy as well as excellent stereoselectivity were achieved for a broad substrate scope. Two new C-C bonds and one new C-O bond were generated sequentially in a one-pot manipulation. The yielded spiro 2,5-dihydrofuran skeleton bearing a tetrasubstituted carbon center constitutes the core structure for plenty of useful natural products or corresponding analogues. This work represents a significant advancement in the dearomatization strategy for furan heterocycles and provides a practical methodology for expedited access to complex spiro dihydrofuran scaffolds.
Collapse
Affiliation(s)
- Lin Lu
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang 330013, China
| | - Haiyang Huang
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang 330013, China
| | - Shanshan Yang
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang 330013, China
| | - Jiang Bai
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang 330013, China
| | - Yirong Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiang Xiao
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang 330013, China
| |
Collapse
|
13
|
de Carvalho RL, Diogo EBT, Homölle SL, Dana S, da Silva Júnior EN, Ackermann L. The crucial role of silver(I)-salts as additives in C-H activation reactions: overall analysis of their versatility and applicability. Chem Soc Rev 2023; 52:6359-6378. [PMID: 37655711 PMCID: PMC10714919 DOI: 10.1039/d3cs00328k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Indexed: 09/02/2023]
Abstract
Transition-metal catalyzed C-H activation reactions have been proven to be useful methodologies for the assembly of synthetically meaningful molecules. This approach bears intrinsic peculiarities that are important to be studied and comprehended in order to achieve its best performance. One example is the use of additives for the in situ generation of catalytically active species. This strategy varies according to the type of additive and the nature of the pre-catalyst that is being used. Thus, silver(I)-salts have proven to play an important role, due to the resulting high reactivity derived from the pre-catalysts of the main transition metals used so far. While being powerful and versatile, the use of silver-based additives can raise concerns, since superstoichiometric amounts of silver(I)-salts are typically required. Therefore, it is crucial to first understand the role of silver(I) salts as additives, in order to wisely overcome this barrier and shift towards silver-free systems.
Collapse
Affiliation(s)
- Renato L de Carvalho
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais-UFMG, 31270-901, Belo Horizonte, MG, Brazil.
| | - Emilay B T Diogo
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais-UFMG, 31270-901, Belo Horizonte, MG, Brazil.
| | - Simon L Homölle
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| | - Suman Dana
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais-UFMG, 31270-901, Belo Horizonte, MG, Brazil.
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| |
Collapse
|
14
|
Liu CX, Yin SY, Zhao F, Yang H, Feng Z, Gu Q, You SL. Rhodium-Catalyzed Asymmetric C-H Functionalization Reactions. Chem Rev 2023; 123:10079-10134. [PMID: 37527349 DOI: 10.1021/acs.chemrev.3c00149] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
This review summarizes the advancements in rhodium-catalyzed asymmetric C-H functionalization reactions during the last two decades. Parallel to the rapidly developed palladium catalysis, rhodium catalysis has attracted extensive attention because of its unique reactivity and selectivity in asymmetric C-H functionalization reactions. In recent years, Rh-catalyzed asymmetric C-H functionalization reactions have been significantly developed in many respects, including catalyst design, reaction development, mechanistic investigation, and application in the synthesis of complex functional molecules. This review presents an explicit outline of catalysts and ligands, mechanism, the scope of coupling reagents, and applications.
Collapse
Affiliation(s)
- Chen-Xu Liu
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Si-Yong Yin
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Fangnuo Zhao
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Hui Yang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Zuolijun Feng
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Qing Gu
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Shu-Li You
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| |
Collapse
|
15
|
Han L, Wei X, Yuan Y, Bai L, Wang H, Luan X. Palladium-Catalyzed C-H Arylation/Arene Dearomatization Domino Reaction: Expeditious Access to Spiro[4,5]fluorenes. Org Lett 2023. [PMID: 37494293 DOI: 10.1021/acs.orglett.3c01961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
A palladium-catalyzed C-H arylation/arene dearomatization of α-aryl-β-naphthol with o-dihalobenzenes was realized in a redox-neutral manner. This bimolecular domino reaction was initiated by an in situ-formed Pd(II) species generated from the dihalobenzene, followed by phenolic-group-directed C-H activation, biaryl cross-coupling, and naphthol dearomatization, thus rendering the rapid assembly of a class of spiro[4,5]fluorenes in high yields with good chemoselectivity. Remarkably, malononitrile-derived spirofluorene 6 was found to exhibit mechanoresponsive luminescence, which can be applied to optical memory devices.
Collapse
Affiliation(s)
- Lingbo Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Xin Wei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Yi Yuan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Lu Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Hui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Xinjun Luan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| |
Collapse
|
16
|
Lin Y, von Münchow T, Ackermann L. Cobaltaelectro-Catalyzed C-H Annulation with Allenes for Atropochiral and P-Stereogenic Compounds: Late-Stage Diversification and Continuous Flow Scale-Up. ACS Catal 2023; 13:9713-9723. [PMID: 38076330 PMCID: PMC10704562 DOI: 10.1021/acscatal.3c02072] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/14/2023] [Indexed: 01/25/2024]
Abstract
The 3d metallaelectro-catalyzed C-H activation has been identified as an increasingly viable strategy to access valuable organic molecules in a resource-economic fashion under exceedingly mild reaction conditions. However, the development of enantioselective 3d metallaelectro-catalyzed C-H activation is very challenging and in its infancy. Here, we disclose the merger of cobaltaelectro-catalyzed C-H activation with asymmetric catalysis for the highly enantioselective annulation of allenes. A broad range of C-N axially chiral and P-stereogenic compounds were thereby obtained in good yields of up to 98% with high enantioselectivities of up to >99% ee. The practicality of this approach was demonstrated by the diversification of complex bioactive compounds and drug molecules as well as decagram scale enantioselective electrocatalysis in continuous flow.
Collapse
Affiliation(s)
- Ye Lin
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität
Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Tristan von Münchow
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität
Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität
Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- WISCh
(Wöhler-Research Institute for Sustainable Chemistry), Georg-August-Universität
Göttingen, Tammannstraße
2, 37077 Göttingen, Germany
| |
Collapse
|
17
|
Kumar MN, Suresh V, Nagireddy A, Nanubolu JB, Reddy MS. Pd-catalyzed regioselective rollover dual C-H annulation cascade: facile approach to phenanthrene derivatives. Chem Commun (Camb) 2023. [PMID: 37475606 DOI: 10.1039/d3cc02523c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Annulations of unsaturated systems through C-H activation represent a powerful tool for producing multicyclic scaffolds. Having coordinating centers in both annulation partners (a dual coordination strategy) would afford remarkable selectivities in the outcomes. Along this concept, we report herein a Pd-catalyzed regioselective rollover cascade dual C-H annulation of o-arylphenols with alkynols for constructing phenanthrene scaffolds. Control, KIE and deuteration studies were conducted to determine the reaction mechanism, and downstream transformations and scaled-up reactions were carried out to assess the robustness of the transformation.
Collapse
Affiliation(s)
- Muniganti Naveen Kumar
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, India
| | - Vavilapalli Suresh
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, India
| | - Attunuri Nagireddy
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, India
| | | | - Maddi Sridhar Reddy
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, India
| |
Collapse
|
18
|
Abstract
We have developed an electrochemical method for the direct C-H sulfonylation of aldehyde hydrazones using sodium sufinates as the sulfonylating agent under supporting electrolyte-free conditions. This straightforward sulfonylation strategy afforded a library of (E)-sufonylated hydrazones with high tolerance of various functional groups. The radical pathway of this reaction has been revealed by the mechanistic studies.
Collapse
Affiliation(s)
- Biswajit Sarkar
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Payel Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| |
Collapse
|
19
|
Bhorali P, Phukon J, Gogoi S. Rh(III)-catalyzed (5 + 2)-cycloaddition reactions of ortho-hydroxyethyl phenols with internal alkynes: efficient synthesis of benzoxepines. Org Biomol Chem 2023; 21:2516-2523. [PMID: 36891904 DOI: 10.1039/d3ob00170a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
An unprecedented (5 + 2)-cycloaddition reaction of ortho-hydroxyethyl phenol and internal alkyne was developed. This Rh(III)-catalyzed reaction provided benzoxepine derivatives which have very high biological significance. A wide range of ortho-hydroxyethyl phenols and internal alkynes were studied to provide the benzoxepines in high yields.
Collapse
Affiliation(s)
- Pratiksha Bhorali
- Applied Organic Chemistry, Chemical Sciences & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| | - Jyotshna Phukon
- Applied Organic Chemistry, Chemical Sciences & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| | - Sanjib Gogoi
- Applied Organic Chemistry, Chemical Sciences & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
20
|
Zhang QX, Xie JH, Gu Q, You SL. Pd-Catalyzed intermolecular asymmetric allylic dearomatization of 1-nitro-2-naphthols with MBH adducts. Chem Commun (Camb) 2023; 59:3590-3593. [PMID: 36883425 DOI: 10.1039/d3cc00568b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
An asymmetric allylic dearomatization reaction of 1-nitro-2-naphthol derivatives with Morita-Baylis-Hillman (MBH) adducts has been developed. By utilizing Pd catalyst derived from Pd(OAc)2 and Trost ligand (R,R)-L1, the reaction proceeded smoothly in 1,4-dioxane at room temperature, affording substituted β-naphthalenones in good yields (up to 92%) and enantioselectivity (up to 90% ee). A range of substituted 1-nitro-2-naphthols and MBH adducts were found to be compatible under the optimized conditions. This reaction provides a convenient method for the synthesis of enantioenriched 1-nitro-β-naphthalenone derivatives.
Collapse
Affiliation(s)
- Qing-Xia Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China.
| | - Jia-Hao Xie
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China.
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China.
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China.
| |
Collapse
|
21
|
Changmai S, Sultana S, Saikia AK. Review of electrochemical transition‐metal‐catalyzed C−H functionalization reactions. ChemistrySelect 2023. [DOI: 10.1002/slct.202203530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Affiliation(s)
- Sumi Changmai
- Applied Organic Chemistry Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology 785006 Jorhat India
- Academy of Scientific and Innovative Research (AcSIR) 201002 Ghaziabad India
| | | | - Anil K. Saikia
- Indian Institute of Technology-Guwahati Department of Chemistry Guwahati 781039 Assam India
| |
Collapse
|
22
|
Baroliya PK, Dhaker M, Panja S, Al-Thabaiti SA, Albukhari SM, Alsulami QA, Dutta A, Maiti D. Transition Metal-Catalyzed C-H Functionalization Through Electrocatalysis. CHEMSUSCHEM 2023:e202202201. [PMID: 36881013 DOI: 10.1002/cssc.202202201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Electrochemically promoted transition metal-catalyzed C-H functionalization has emerged as a promising area of research over the last few decades. However, development in this field is still at an early stage compared to traditional functionalization reactions using chemical-based oxidizing agents. Recent reports have shown increased attention on electrochemically promoted metal-catalyzed C-H functionalization. From the standpoint of sustainability, environmental friendliness, and cost effectiveness, electrochemically promoted oxidation of a metal catalyst offers a mild, efficient, and atom-economical alternative to traditional chemical oxidants. This Review discusses advances in the field of transition metal-electrocatalyzed C-H functionalization over the past decade and describes how the unique features of electricity enable metal-catalyzed C-H functionalization in an economic and sustainable way.
Collapse
Affiliation(s)
- Prabhat Kumar Baroliya
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, India
| | - Mukesh Dhaker
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, India
| | - Subir Panja
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - Shaeel Ahmed Al-Thabaiti
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Soha M Albukhari
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Qana A Alsulami
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Arnab Dutta
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| |
Collapse
|
23
|
Yao QJ, Huang FR, Chen JH, Zhong MY, Shi BF. Enantio- and Regioselective Electrooxidative Cobalt-Catalyzed C-H/N-H Annulation with Alkenes. Angew Chem Int Ed Engl 2023; 62:e202218533. [PMID: 36658097 DOI: 10.1002/anie.202218533] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
In recent years, the merging of electrosynthesis with 3d metal catalyzed C-H activation has emerged as a sustainable and powerful technique in organic synthesis. Despite the impressive advantages, the development of an enantioselective version remains elusive and poses a daunting challenge. Herein, we report the first electrooxidative cobalt-catalyzed enantio- and regioselective C-H/N-H annulation with olefins using an undivided cell at room temperature (up to 99 % ee). t Bu-Salox, a rationally designed Salox ligand bearing a bulky tert-butyl group at the ortho-position of phenol, was found to be crucial for this asymmetric annulation reaction. A strong cooperative effect between t Bu-Salox and 3,4,5-trichloropyridine enabled the highly enantio- and regioselective C-H annulation with the more challenging α-olefins without secondary bond interactions (up to 96 % ee and 97 : 3 rr). Cyclovoltametric studies, and the preparation, characterization, and transformation of cobaltacycle intermediates shed light on the mechanism of this reaction.
Collapse
Affiliation(s)
- Qi-Jun Yao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Fan-Rui Huang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jia-Hao Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Ming-Yu Zhong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
24
|
Karmakar P, Karmakar I, Pal D, Das S, Brahmachari G. Electrochemical Regioselective C( sp2)-H Selenylation and Sulfenylation of Substituted 2-Amino-1,4-naphthoquinones. J Org Chem 2023; 88:1049-1060. [PMID: 36599149 DOI: 10.1021/acs.joc.2c02486] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A straightforward and efficient electrochemical method for regioselective C(sp2)-H selenylation and sulfenylation of substituted 2-amino-1,4-naphthoquinones has been unearthed. This oxidative cross-coupling reaction avoids using transition metal catalysts, oxidants, and high temperatures. The other notable advantages of this protocol are the tolerance of diverse functional groups, mild reaction conditions at ambient temperature, energy efficiency, good to excellent yields, short reaction times (in minutes), gram-scale applicability, and eco-friendliness.
Collapse
Affiliation(s)
- Pintu Karmakar
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan 731 235, West Bengal, India
| | - Indrajit Karmakar
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan 731 235, West Bengal, India
| | - Debopam Pal
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan 731 235, West Bengal, India
| | - Suravi Das
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan 731 235, West Bengal, India
| | - Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan 731 235, West Bengal, India
| |
Collapse
|
25
|
Zhao X, Fan C, He J, Luo Y. Rh-Catalyzed [3+2] Annulation of Cyclic Ketimines and Alkynyl Chloride: A Strategy for Accessing Unsymmetrically Substituted and Highly Functionalizable Indenes. Org Lett 2022; 24:9169-9173. [PMID: 36503272 PMCID: PMC9791992 DOI: 10.1021/acs.orglett.2c02717] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alkynyl chlorides were found to be extraordinarily novel electrophiles, which could afford a single regioisomer of the [3+2] annulation adducts with cyclic ketimines by rhodium catalysis. The alkenyl chloride moiety in the products provided a valuable functional handle for further diverse transformations. Therefore, this research provided not only a synthetic protocol for accessing unsymmetrically substituted indenyl amines but also a highly divergent solution for decorating the substituting group by postmanipulation of the chloride.
Collapse
Affiliation(s)
- Xu Zhao
- Anhui
Province Key Laboratory of Advanced Catalytic Materials and Reaction
Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chenrui Fan
- Anhui
Province Key Laboratory of Advanced Catalytic Materials and Reaction
Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China,School
of Material Science and Engineering, Hefei
University of Technology, Hefei 230009, China
| | - Jianbo He
- Anhui
Province Key Laboratory of Advanced Catalytic Materials and Reaction
Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China,School
of Material Science and Engineering, Hefei
University of Technology, Hefei 230009, China
| | - Yunfei Luo
- Anhui
Province Key Laboratory of Advanced Catalytic Materials and Reaction
Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China,
| |
Collapse
|
26
|
Tian HD, Fu ZH, Li C, Lin HC, Li M, Ni SF, Wen LR, Zhang LB. Selective Electrochemical Synthesis of 9-Aryl-10-sulfonyl Substituted Phenanthrene from Alkynes and Sulfonyl Hydrazides. Org Lett 2022; 24:9322-9326. [PMID: 36484520 DOI: 10.1021/acs.orglett.2c03948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An efficient electrochemical synthesis of sulfonated phenanthrenes via the reaction of internal alkynes with sulfonyl hydrazides has been established. The protocol does not require a metal catalyst or external oxidants, providing a green and mild route to functionalized phenanthrenes. Moreover, the compatibility of various functional groups and decagram-scale experimental conditions demonstrate the practicality of the electrochemical strategy.
Collapse
Affiliation(s)
- Hao-Dong Tian
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Zi-Hao Fu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Chen Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Huang-Chu Lin
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Ming Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Shao-Fei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Li-Rong Wen
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Lin-Bao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| |
Collapse
|
27
|
Elinson MN, Vereshchagin AN, Ryzhkova YE, Karpenko KA, Ryzhkov FV, Egorov MP. Electrocatalytic Cascade Selective Approach to 3-Aryl-2' H,3 H,4 H-Spiro{Furo[2,3- с]Chromene-2,5'-Pyrimidine}-2',4,4',6'(1' H,3' H)Tetraones and Its Automatic Screening Docking Studies. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2149568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Affiliation(s)
- Michail N. Elinson
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Anatoly N. Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Yuliya E. Ryzhkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Kirill A. Karpenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Fedor V. Ryzhkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Mikhail P. Egorov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
28
|
Mondal A, van Gemmeren M. Silver-Free C-H Activation: Strategic Approaches towards Realizing the Full Potential of C-H Activation in Sustainable Organic Synthesis. Angew Chem Int Ed Engl 2022; 61:e202210825. [PMID: 36062882 PMCID: PMC9828228 DOI: 10.1002/anie.202210825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 01/12/2023]
Abstract
The activation of carbon-hydrogen bonds is considered as one of the most attractive techniques in synthetic organic chemistry because it bears the potential to shorten synthetic routes as well as to produce complementary product scopes compared to traditional synthetic strategies. However, many current methods employ silver salts as additives, leading to stoichiometric metal waste and thereby preventing the full potential of C-H activation to be exploited. Therefore, the development of silver-free protocols has recently received increasing attention. Mechanistically, silver can serve various roles in C-H activation and thus, avoiding the use of silver requires different approaches based on the role it serves in a given process. In this Review, we present the comparison of silver-based and silver-free methods. Focusing on the strategic approaches to develop silver-free C-H activation, we provide the reader with the means to develop sustainable methods for C-H activation.
Collapse
Affiliation(s)
- Arup Mondal
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Manuel van Gemmeren
- Otto-Diels-Institut für Organische ChemieChristian-Albrechts-Universität zu KielOtto-Hahn-Platz 424118KielGermany
| |
Collapse
|
29
|
Zhang J, Das B, Verho O, Bäckvall J. Electrochemical Palladium‐Catalyzed Oxidative Carbonylation‐Cyclization of Enallenols. Angew Chem Int Ed Engl 2022; 61:e202212131. [PMID: 36222322 PMCID: PMC10098644 DOI: 10.1002/anie.202212131] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Indexed: 11/06/2022]
Abstract
Herein, we report an electrochemical oxidative palladium-catalyzed carbonylation-carbocyclization of enallenols to afford γ-lactones and spirolactones, which proceeds with excellent chemoselectivity. Interestingly, electrocatalysis was found to have an accelerating effect on the rate of the tandem process, leading to a more efficient reaction than that under chemical redox conditions.
Collapse
Affiliation(s)
- Jianwei Zhang
- Department of Organic Chemistry, Arrhenius Laboratory Stockholm University 10691 Stockholm Sweden
| | - Biswanath Das
- Department of Organic Chemistry, Arrhenius Laboratory Stockholm University 10691 Stockholm Sweden
| | - Oscar Verho
- Department of Medicinal Chemistry Uppsala Biomedical Center, BMC Uppsala University 75236 Uppsala Sweden
| | - Jan‐E. Bäckvall
- Department of Organic Chemistry, Arrhenius Laboratory Stockholm University 10691 Stockholm Sweden
| |
Collapse
|
30
|
Zhang QX, Gu Q, You SL. Palladium(0)-Catalyzed Intermolecular Asymmetric Allylic Dearomatization of Substituted β-Naphthols with Morita-Baylis-Hillman (MBH) Adducts. Org Lett 2022; 24:8031-8035. [PMID: 36264244 DOI: 10.1021/acs.orglett.2c03262] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pd-catalyzed intermolecular asymmetric allylic dearomatization of substituted β-naphthol derivatives with Boc-protected Morita-Baylis-Hillman (MBH) adducts was developed. The reaction occurs smoothly in 1,4-dioxane at room temperature in the presence of [Pd(C3H5)Cl]2 (2.5 mol %), (S, Sp)-PHOX ligand (5.5 mol %), and Li2CO3 (1.0 equiv). A series of dearomatized products were afforded in moderate to excellent yields and enantioselectivity (up to 99% yield, 97% ee). Furthermore, the compatibility with gram-scale reaction and mild conditions make the current method synthetically useful.
Collapse
Affiliation(s)
- Qing-Xia Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
31
|
Yang L, Pi C, Wu Y, Cui X. Lewis Acid-Catalyzed [3 + 2]-Cyclization of Iodonium Ylides with Azadienes: Access to Spiro[benzofuran-2,2'-furan]-3-ones. Org Lett 2022; 24:7502-7506. [PMID: 36218222 DOI: 10.1021/acs.orglett.2c02660] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly regioselective synthesis of spiro[benzofuran-2,2'-furan]-3-ones has been explored via Lewis acid-catalyzed [3 + 2] cyclization of iodonium ylides with azadienes. The acidity of the Lewis acid was significantly strengthened with strong hydrogen bond donors, thereby promoting the enolization isomerization of iodonium ylides for the subsequent cycloaddition. This reaction was compatible with a broad range of substrates under the mild reaction conditions, and efficiently delivered spiro-heterocycles with excellent stereoselectivity.
Collapse
Affiliation(s)
- Liu Yang
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Chao Pi
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Yangjie Wu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Xiuling Cui
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| |
Collapse
|
32
|
Zhang Q, Liang K, Guo C. Enantioselective Nickel‐Catalyzed Electrochemical Radical Allylation. Angew Chem Int Ed Engl 2022; 61:e202210632. [DOI: 10.1002/anie.202210632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Qinglin Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Kang Liang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Chang Guo
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
33
|
Zhang Q, Liang K, Guo C. Enantioselective Nickel‐Catalyzed Electrochemical Radical Allylation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Qinglin Zhang
- USTC: University of Science and Technology of China HFNL CHINA
| | - Kang Liang
- USTC: University of Science and Technology of China HFNL CHINA
| | - Chang Guo
- University of Science and Technology of China Hefei National Laboratory for Physical Sciences at the Microscale No.96, JinZhai Road Baohe District 230026 Hefei CHINA
| |
Collapse
|
34
|
Li N, Shi Z, Yuan Y, Li Z, Ye KY. Rapid synthesis of spirodienones via electrochemical dearomative spirocyclization in flow. Org Chem Front 2022. [DOI: 10.1039/d2qo01392d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An electrochemical dearomative spirocyclization in flow has been developed, featuring the use of electrons as the clean oxidant in a minimum amount of electrolytes to afford diverse spirodienones in a short reaction time.
Collapse
Affiliation(s)
- Nan Li
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhaojiang Shi
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yaofeng Yuan
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhen Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Ke-Yin Ye
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|