1
|
Hernández-López C, Baconnier P, Coulais C, Dauchot O, Düring G. Model of Active Solids: Rigid Body Motion and Shape-Changing Mechanisms. PHYSICAL REVIEW LETTERS 2024; 132:238303. [PMID: 38905651 DOI: 10.1103/physrevlett.132.238303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/26/2024] [Accepted: 04/03/2024] [Indexed: 06/23/2024]
Abstract
Active solids such as cell collectives, colloidal clusters, and active metamaterials exhibit diverse collective phenomena, ranging from rigid body motion to shape-changing mechanisms. The nonlinear dynamics of such active materials remains, however, poorly understood when they host zero-energy deformation modes and when noise is present. Here, we show that stress propagation in a model of active solids induces the spontaneous actuation of multiple soft floppy modes, even without exciting vibrational modes. By introducing an adiabatic approximation, we map the dynamics onto an effective Landau free energy, predicting mode selection and the onset of collective dynamics. These results open new ways to study and design living and robotic materials with multiple modes of locomotion and shape change.
Collapse
Affiliation(s)
- Claudio Hernández-López
- Laboratoire de Physique de l'École Normale Supérieure, UMR CNRS 8023, Université PSL, Sorbonne Université, 75005 Paris, France
- Instituto de Física, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
| | - Paul Baconnier
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, Paris, France
| | - Corentin Coulais
- Institute of Physics, Universiteit van Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Olivier Dauchot
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, Paris, France
| | - Gustavo Düring
- Instituto de Física, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
| |
Collapse
|
2
|
Lamura A. Excluded volume effects on tangentially driven active ring polymers. Phys Rev E 2024; 109:054611. [PMID: 38907431 DOI: 10.1103/physreve.109.054611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/08/2024] [Indexed: 06/24/2024]
Abstract
The conformational and dynamical properties of active ring polymers are studied by numerical simulations. The two-dimensionally confined polymer is modeled as a closed bead-spring chain, driven by tangential forces, put in contact with a heat bath described by the Brownian multiparticle collision dynamics. Both phantom polymers and chains comprising excluded volume interactions are considered for different bending rigidities. The size and shape are found to be dependent on persistence length, driving force, and bead mutual exclusion. The lack of excluded volume interactions is responsible for a shrinkage of active rings when increasing driving force in the flexible limit, while the presence induces a moderate swelling of chains. The internal dynamics of flexible phantom active rings shows activity-enhanced diffusive behavior at large activity values while, in the case of self-avoiding active chains, it is characterized by active ballistic motion not depending on stiffness. The long-time dynamics of active rings is marked by rotational motion whose period scales as the inverse of the applied tangential force, irrespective of persistence length and beads' self-exclusion.
Collapse
Affiliation(s)
- A Lamura
- Istituto Applicazioni Calcolo, Consiglio Nazionale delle Ricerche (CNR), Via Amendola 122/D, 70126 Bari, Italy
| |
Collapse
|
3
|
de Castro P, Urbina F, Norambuena A, Guzmán-Lastra F. Sequential epidemic-like spread between agglomerates of self-propelled agents in one dimension. Phys Rev E 2023; 108:044104. [PMID: 37978653 DOI: 10.1103/physreve.108.044104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/13/2023] [Indexed: 11/19/2023]
Abstract
Motile organisms can form stable agglomerates such as cities or colonies. In the outbreak of a highly contagious disease, the control of large-scale epidemic spread depends on factors like the number and size of agglomerates, travel rate between them, and disease recovery rate. While the emergence of agglomerates permits early interventions, it also explains longer real epidemics. In this work, we study the spread of susceptible-infected-recovered (SIR) epidemics (or any sort of information exchange by contact) in one-dimensional spatially structured systems. By working in one dimension, we establish a necessary foundation for future investigation in higher dimensions and mimic micro-organisms in narrow channels. We employ a model of self-propelled particles which spontaneously form multiple clusters. For a lower rate of stochastic reorientation, particles have a higher tendency to agglomerate and therefore the clusters become larger and less numerous. We examine the time evolution averaged over many epidemics and how it is affected by the existence of clusters through the eventual recovery of infected particles before reaching new clusters. New terms appear in the SIR differential equations in the last epidemic stages. We show how the final number of ever-infected individuals depends nontrivially on single-individual parameters. In particular, the number of ever-infected individuals first increases with the reorientation rate since particles escape sooner from clusters and spread the disease. For higher reorientation rate, travel between clusters becomes too diffusive and the clusters too small, decreasing the number of ever-infected individuals.
Collapse
Affiliation(s)
- Pablo de Castro
- ICTP-South American Institute for Fundamental Research - Instituto de Física Teórica da UNESP, Rua Dr. Bento Teobaldo Ferraz 271, 01140-070 São Paulo, Brazil
| | - Felipe Urbina
- Centro Multidisciplinario de Física, Universidad Mayor, Huechuraba, 8580745 Santiago, Chile
| | - Ariel Norambuena
- Centro Multidisciplinario de Física, Universidad Mayor, Huechuraba, 8580745 Santiago, Chile
| | | |
Collapse
|
4
|
Yan R, Tan F, Wang J, Zhao N. Conformation and dynamics of an active filament in crowded media. J Chem Phys 2023; 158:114905. [PMID: 36948796 DOI: 10.1063/5.0142559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
The structural and dynamical properties of active filamentous objects under macromolecular crowding have a great relevance in biology. By means of Brownian dynamics simulations, we perform a comparative study for the conformational change and diffusion dynamics of an active chain in pure solvents and in crowded media. Our result shows a robust compaction-to-swelling conformational change with the augment of the Péclet number. The presence of crowding facilitates self-trapping of monomers and, thus, reinforces the activity mediated compaction. In addition, the efficient collisions between the self-propelled monomers and crowders induce a coil-to-globulelike transition, indicated by a marked change of the Flory scaling exponent of the gyration radius. Moreover, the diffusion dynamics of the active chain in crowded solutions demonstrates activity-enhanced subdiffusion. The center of mass diffusion manifests rather new scaling relations with respect to both the chain length and Péclet number. The interplay of chain activity and medium crowding provides a new mechanism to understand the non-trivial properties of active filaments in complex environments.
Collapse
Affiliation(s)
- Ran Yan
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Fei Tan
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jingli Wang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Nanrong Zhao
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
5
|
Theeyancheri L, Chaki S, Bhattacharjee T, Chakrabarti R. Migration of active rings in porous media. Phys Rev E 2022; 106:014504. [PMID: 35974648 DOI: 10.1103/physreve.106.014504] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Inspired by how the shape deformations in active organisms help them to migrate through disordered porous environments, we simulate active ring polymers in two-dimensional random porous media. Flexible and inextensible active ring polymers navigate smoothly through the disordered media. In contrast, semiflexible rings undergo transient trapping inside the pore space; the degree of trapping is inversely correlated with the increase in activity. We discover that flexible rings swell while inextensible and semiflexible rings monotonically shrink upon increasing the activity. Together, our findings identify the optimal migration of active ring polymers through porous media.
Collapse
Affiliation(s)
- Ligesh Theeyancheri
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Subhasish Chaki
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Tapomoy Bhattacharjee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
6
|
Prathyusha KR, Ziebert F, Golestanian R. Emergent conformational properties of end-tailored transversely propelling polymers. SOFT MATTER 2022; 18:2928-2935. [PMID: 35348175 DOI: 10.1039/d2sm00237j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We study the dynamics and conformations of a single active semiflexible polymer whose monomers experience a propulsion force perpendicular to the local tangent, with the end beads being different from the inner beads ("end-tailored"). Using Langevin simulations, we demonstrate that, apart from sideways motion, the relative propulsion strength between the end beads and the polymer backbone significantly changes the conformational properties of the polymers as a function of bending stiffness, end-tailoring and propulsion force. Expectedly, for slower ends the polymer curves away from the moving direction, while faster ends lead to opposite curving, in both cases slightly reducing the center of mass velocity compared to a straight fiber. Interestingly, for faster end beads there is a rich and dynamic morphology diagram: the polymer ends may get folded together to 2D loops or hairpin-like conformations that rotate due to their asymmetry in shape and periodic flapping motion around a rather straight state during full propulsion is also possible. We rationalize the simulations using scaling and kinematic arguments and present the state diagram of the conformations. Sideways propelled fibers comprise a rather unexplored and versatile class of self-propellers, and their study will open novel ways for designing, e.g. motile actuators or mixers in soft robotics.
Collapse
Affiliation(s)
- K R Prathyusha
- Max Planck Institute for Dynamics and Self-Organization, D-37077 Göttingen, Germany.
- Center for Softmatter Physics and its Applications, University of Beihang, Beijing, China
| | - Falko Ziebert
- Institute for Theoretical Physics, Heidelberg University, D-69120 Heidelberg, Germany.
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization, D-37077 Göttingen, Germany.
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, UK.
| |
Collapse
|
7
|
Eisenstecken T, Winkler RG. Path integral description of semiflexible active Brownian polymers. J Chem Phys 2022; 156:064105. [DOI: 10.1063/5.0081020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Roland G. Winkler
- Institute for Advanced Simulation, Forschungszentrum Jülich, Germany
| |
Collapse
|