1
|
Pukalski J, MokrzyÅski K, Chyc M, Potrzebowski MJ, Makowski T, Dulski M, Latowski D. Synthesis and characterization of allomelanin model from 1,8-dihydroxynaphthalene autooxidation. Sci Rep 2025; 15:567. [PMID: 39747342 PMCID: PMC11695988 DOI: 10.1038/s41598-024-84405-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
In this work a novel method for synthesis of 1,8-dihydroxynaphthalene melanin was presented, as well as the physicochemical properties, molecular structure, and characteristics of the pigment. The proposed synthesis protocol is simple and cost-effective with no enzymes or catalysts needed. The final product is not adsorbed on any surface, since the pigment is the result of autooxidation of 1,8-dihydroxynaphthalene. Performed analyses revealed that the solubility, optical and paramagnetic properties are typical for melanins, and in the EPR spectra an unusual hyperfine structure was observed. The molecular structure of the pigment consists of three different layers forming polar and non-polar surfaces. Additionally, the presence of ether bonds presence was revealed. The developed method creates new opportunities for melanin research and eliminates the need to extract melanins from biological samples, which often lead to structural changes in isolated melanins, which undermines the reliability of analyses of the properties and structure of these polymers. On the other hand, the ubiquity of melanins in living organisms and the diversity of their biological functions have let to the growing interest of researchers in this group of pigments. The analyses carried out show that the obtained synthetic DHN polymer can be considered as a model DHN-melanin in mycological studies and material research.
Collapse
Affiliation(s)
- Jan Pukalski
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Plant Physiology and Biochemistry, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Krystian MokrzyÅski
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics and Cancer Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Marek Chyc
- University of Applied Sciences in Tarnów, Mickiewicza 8, 33-100, Tarnów, Poland
| | - Marek J Potrzebowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Åódź, Poland
| | - Tomasz Makowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Åódź, Poland
| | - Mateusz Dulski
- Institute of Materials Engineering, University of Silesia, 75 PuÅku Piechoty 1A, 41-500, Chorzow, Poland
| | - Dariusz Latowski
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Plant Physiology and Biochemistry, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
2
|
Motovilov KA, Mostert AB. Melanin: Nature's 4th bioorganic polymer. SOFT MATTER 2024; 20:5635-5651. [PMID: 39012013 DOI: 10.1039/d4sm00491d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The pigments known as the melanins are widely recognized for their responsibility in the coloration of human skin, eyes, hair, and minimising the harmful effects of solar ultraviolet radiation. But specialists are aware that the melanins are present in all living kingdoms, barring viruses, and have functionality that extends beyond neutralizing ionising radiation. The ubiquitous presence of melanin in almost all human organs, recognized in recent years, as well as the presence of melanin in organisms that are evolutionarily distant from each other, indicate the fundamental importance of this class of material for all life forms. In this review, we argue for the need to accept melanins as the fourth primordial class of biological polymers, along with nucleic acids, proteins and polysaccharides. We consistently compare the properties of these canonical biological polymers with the properties of melanin and highlight key features that fundamentally distinguish melanins, their function and its mysteries.
Collapse
Affiliation(s)
- K A Motovilov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny 141701, Moscow Region, Russia.
| | - A B Mostert
- Department of Physics and Centre for Integrative Semiconductor Materials, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EN, UK
| |
Collapse
|
3
|
Raghuram E, Padmarajan R, Kalpathy SK. Hydrogen bond induced solvent ordering in aqueous poly (sodium p-styrenesulfonate). POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Mostert AB. The importance of water content on the conductivity of biomaterials and bioelectronic devices. J Mater Chem B 2022; 10:7108-7121. [PMID: 35735112 DOI: 10.1039/d2tb00593j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conductive biocompatible-, bioinspired- and biomaterials are increasing in importance, especially in bioelectronic applications where these materials are used in a variety of devices. Given the intended purpose of many of these devices is to interface with the human body, a pertinent issue is the effect of water from the environment on the electrical properties of the materials and devices. A researcher on biomaterials may currently not be aware, but the conductivity of these materials and device performances can be significantly altered with the presence of hydration in the environment. Examples will be given to highlight the problem that the conductivity of biomaterials can change by orders of magnitude depending on water content. Furthermore, case studies will be discussed in which control of the water content was key to understanding the underlying charge transport mechanism of conductive biomaterials. Examples of various devices and their response to hydration content will also be covered. Finally, this perspective will also mention the various methods of hydration control (including contrast studies) that can be used to perform careful work on conductive biomaterials and devices. Overall, water content should be considered an environmental variable as important as temperature to control for sound scientific investigation and to yield understanding of conductive biomaterials and bioelectronic devices.
Collapse
Affiliation(s)
- A Bernardus Mostert
- Department of Physics, Swansea University, Singleton Park, SA2, 8PP, Wales, UK.
| |
Collapse
|
5
|
Gagkayeva ZV, Gorshunov BP, Kachesov AY, Motovilov KA. Infrared fingerprints of water collective dynamics indicate proton transport in biological systems. Phys Rev E 2022; 105:044409. [PMID: 35590571 DOI: 10.1103/physreve.105.044409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/03/2022] [Indexed: 06/15/2023]
Abstract
Recent publications on spectroscopy of water layers in water bridge structures revealed a significant enhancement of the proton mobility and the dielectric contribution of translational vibrations of water molecules in the interfacial layers compared to bulk water. Herewith, the results of long-term studies of proton dynamics in solid-state acids have shown that proton mobility increases significantly with the predominance of hydronium, but not Zundel, cations in the aqueous phase. In the present work, in the light of these data, we reanalyzed our previously published results on broadband dielectric spectroscopy of bovine heart cytochrome c, bovine serum albumin, and the extracellular matrix and filaments of Shewanella oneidensis MR-1. We revealed that, just as in water bridges, an increase in electrical conductivity in these systems correlates with an increase in the dielectric contribution of water molecular translational vibrations. In addition, the appearance of spectral signatures of the hydronium cations was observed only in those cases when the system revealed noticeable electrical conductivity due to delocalized charge carriers.
Collapse
Affiliation(s)
- Z V Gagkayeva
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology (National Research University), 9 Institutskiy per., Dolgoprudny, Moscow Region 141701, Russian Federation
| | - B P Gorshunov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology (National Research University), 9 Institutskiy per., Dolgoprudny, Moscow Region 141701, Russian Federation
| | - A Ye Kachesov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology (National Research University), 9 Institutskiy per., Dolgoprudny, Moscow Region 141701, Russian Federation
| | - K A Motovilov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology (National Research University), 9 Institutskiy per., Dolgoprudny, Moscow Region 141701, Russian Federation
| |
Collapse
|
6
|
Bedran ZV, Zhukov SS, Abramov PA, Tyurenkov IO, Gorshunov BP, Mostert AB, Motovilov KA. Water-Activated Semiquinone Formation and Carboxylic Acid Dissociation in Melanin Revealed by Infrared Spectroscopy. Polymers (Basel) 2021; 13:4403. [PMID: 34960952 PMCID: PMC8705668 DOI: 10.3390/polym13244403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 01/22/2023] Open
Abstract
Eumelanin is a widespread biomacromolecule pigment in the biosphere and has been widely investigated for numerous bioelectronics and energetic applications. Many of these applications depend on eumelanin's ability to conduct proton current at various levels of hydration. The origin of this behavior is connected to a comproportionation reaction between oxidized and reduced monomer moieties and water. A hydration-dependent FTIR spectroscopic study on eumelanin is presented herein, which allows for the first time tracking the comproportionation reaction via the gradual increase of the overall aromaticity of melanin monomers in the course of hydration. We identified spectral features associated with the presence of specific "one and a half" CðO bonds, typical for o-semiquinones. Signatures of semiquinone monomers with internal hydrogen bonds and that carboxylic groups, in contrast to semiquinones, begin to dissociate at the very beginning of melanin hydration were indicated. As such, we suggest a modification to the common hydration-dependent conductivity mechanism and propose that the conductivity at low hydration is dominated by carboxylic acid protons, whereas higher hydration levels manifest semiquinone protons.
Collapse
Affiliation(s)
- Zakhar V. Bedran
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Institute Lane 9, 141701 Dolgoprudny, Russia; (Z.V.B.); (S.S.Z.); (P.A.A.); (I.O.T.); (B.P.G.)
| | - Sergey S. Zhukov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Institute Lane 9, 141701 Dolgoprudny, Russia; (Z.V.B.); (S.S.Z.); (P.A.A.); (I.O.T.); (B.P.G.)
| | - Pavel A. Abramov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Institute Lane 9, 141701 Dolgoprudny, Russia; (Z.V.B.); (S.S.Z.); (P.A.A.); (I.O.T.); (B.P.G.)
| | - Ilya O. Tyurenkov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Institute Lane 9, 141701 Dolgoprudny, Russia; (Z.V.B.); (S.S.Z.); (P.A.A.); (I.O.T.); (B.P.G.)
| | - Boris P. Gorshunov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Institute Lane 9, 141701 Dolgoprudny, Russia; (Z.V.B.); (S.S.Z.); (P.A.A.); (I.O.T.); (B.P.G.)
| | - A. Bernardus Mostert
- Department of Chemistry, Swansea University, Singleton Park, Swansea SA2 8PP, UK;
| | - Konstantin A. Motovilov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Institute Lane 9, 141701 Dolgoprudny, Russia; (Z.V.B.); (S.S.Z.); (P.A.A.); (I.O.T.); (B.P.G.)
| |
Collapse
|