1
|
Yu L, Huang X, Feng N, Fu W, Xin X, Hao J, Li H. Solvent-Free Artificial Light-Harvesting System in a Fluid Donor with Highly Efficient Förster Resonance Energy Transfer. J Phys Chem Lett 2025; 16:1305-1311. [PMID: 39873336 DOI: 10.1021/acs.jpclett.4c03518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Multi-step Förster resonance energy transfer (FRET) plays a vital role in photosynthesis. While the energy transfer efficiency (ΦET) of a naturally occurring system can reach 95%, that of most artificial light-harvesting systems (ALHSs) is still limited. Herein, we propose a strategy to construct highly efficient ALHSs using a blue-emitting, supercooled ionic compound of naphthalimide (NPI) as the donor, a green-emitting BODIPY derivate as a relay acceptor, and a commercially available, red-emitting dye [rhodamine B (RhB)] as the final acceptor. The broad emission of the fluid donor can overlap simultaneously with the absorption of BODIPY and RhB, enabling the occurrence of a sequential FRET from NPI to BODIPY to RhB as well as a parallel FRET directly from NPI to RhB. These two complementary energy transfer routes lead to an overall ΦET up to 97.4%, which is the champion among all of the reported ALHSs and is also higher than that found in plants and photosynthetic bacteria. This strategy is universal, and ΦET of the system could be further improved by optimizing the structures of the fluid donor and relay acceptor.
Collapse
Affiliation(s)
- Longyue Yu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xionghui Huang
- China Research Institute of Daily Chemical Industry, Taiyuan, Shanxi 030001, China
| | - Ning Feng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Wenwen Fu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xia Xin
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Hongguang Li
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
2
|
Yang JC, Chen K, Zhang GL, Qi C, Feng HT, Tang BZ. Novel supramolecular artificial light-harvesting systems based on AIE-active macrocycles for efficient white-light photocatalysis in water. Chem Sci 2025:d4sc07689c. [PMID: 39958643 PMCID: PMC11826479 DOI: 10.1039/d4sc07689c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/01/2025] [Indexed: 02/18/2025] Open
Abstract
Constructing supramolecular artificial light-harvesting systems (ALHSs) based on the Förster resonance energy transfer (FRET) mechanism provides an optimal platform for understanding natural photosynthesis and simulating natural light-harvesting systems. In the present work, rigid macrocycle K-1 with a nonplanar conformation and aggregation-induced emission (AIE) properties was selected as an energy donor in ALHSs, while the non-cyclic AIEgen K-2 was used for a comparative study. In aqueous solution, an efficient one-step energy-transfer process was established between blue-emitting K-1 and an acceptor (namely PBTB) with orange fluorescence to afford a high energy-transfer efficiency (Φ ET) of up to 82.6%. Notably, bright white light emission can be readily realized. Moreover, the triad FRET system was fabricated through energy transfer from the AIEgens to PBTB, then further transferring the captured energy to the final red-emitting acceptor (namely as Z1), achieving an efficient two-step sequential energy transfer. When the ratio of K-1/PBTB/Z1 assemblies reached 1000 : 40 : 14, the optimal Φ ET was 66.4%. More importantly, it was found that the ALHS based on macrocycle K-1 showed much higher photocatalytic activity for the cross-dehydrogenative coupling (CDC) reaction. Therefore, the flexibility of this novel supramolecular strategy renders the macrocyclic AIEgen a promising candidate to construct efficient ALHSs for photocatalysis.
Collapse
Affiliation(s)
- Jun-Cheng Yang
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences Baoji Shaanxi 721013 China
| | - Ke Chen
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences Baoji Shaanxi 721013 China
| | - Guo-Ling Zhang
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences Baoji Shaanxi 721013 China
| | - Chunxuan Qi
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences Baoji Shaanxi 721013 China
| | - Hai-Tao Feng
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences Baoji Shaanxi 721013 China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong Shenzhen 518172 China
| |
Collapse
|
3
|
Lian Z, He J, Liu L, Fan Y, Chen X, Jiang H. [2,2] Paracyclophanes-based double helicates for constructing artificial light-harvesting systems and white LED device. Nat Commun 2023; 14:2752. [PMID: 37173318 PMCID: PMC10182020 DOI: 10.1038/s41467-023-38405-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
The construction of efficient artificial light-harvesting systems (ALHSs) is of vital importance in utilizing solar energy. Herein, we report the non-covalent syntheses of double helicates PCP-TPy1/2 and Rp,Rp-PCP-TPy1/2 by metal-coordination interaction and their applications in ALHSs and white light-emitting diode (LED) device. All double helicates exhibit significant aggregation-induced emission in tetrahydrofuran/water (1:9, v/v) solvent. The aggregated double helicates can be used to construct one-step or sequential ALHSs with fluorescent dyes Eosin Y (EsY) and Nile red (NiR) with the energy transfer efficiency up to 89.3%. Impressively, the PMMA film of PCP-TPy1 shows white-light emission when doped 0.075% NiR, the solid of double helicates (Rp,Rp-) PCP-TPy2 can be used as the additive of a blue LED bulb to achieve white-light emission. In this work, we provided a general method for the preparation of novel double helicates and explored their applications in ALHSs and fluorescent materials, which will promote future construction and application of helicates as emissive devices.
Collapse
Affiliation(s)
- Zhe Lian
- College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Jing He
- College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Lin Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Yanqing Fan
- College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Xuebo Chen
- College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Hua Jiang
- College of Chemistry, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
4
|
Chen XM, Chen X, Hou XF, Zhang S, Chen D, Li Q. Self-assembled supramolecular artificial light-harvesting nanosystems: construction, modulation, and applications. NANOSCALE ADVANCES 2023; 5:1830-1852. [PMID: 36998669 PMCID: PMC10044677 DOI: 10.1039/d2na00934j] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Artificial light-harvesting systems, an elegant way to capture, transfer and utilize solar energy, have attracted great attention in recent years. As the primary step of natural photosynthesis, the principle of light-harvesting systems has been intensively investigated, which is further employed for artificial construction of such systems. Supramolecular self-assembly is one of the feasible methods for building artificial light-harvesting systems, which also offers an advantageous pathway for improving light-harvesting efficiency. Many artificial light-harvesting systems based on supramolecular self-assembly have been successfully constructed at the nanoscale with extremely high donor/acceptor ratios, energy transfer efficiency and the antenna effect, which manifests that self-assembled supramolecular nanosystems are indeed a viable way for constructing efficient light-harvesting systems. Non-covalent interactions of supramolecular self-assembly provide diverse approaches to improve the efficiency of artificial light-harvesting systems. In this review, we summarize the recent advances in artificial light-harvesting systems based on self-assembled supramolecular nanosystems. The construction, modulation, and applications of self-assembled supramolecular light-harvesting systems are presented, and the corresponding mechanisms, research prospects and challenges are also briefly highlighted and discussed.
Collapse
Affiliation(s)
- Xu-Man Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Xiao Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Xiao-Fang Hou
- Key Lab of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Shu Zhang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Dongzhong Chen
- Key Lab of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University Kent OH 44242 USA
| |
Collapse
|
5
|
Jiahong L, Jialu S, Chenhui P, Guoze Y. The Materials and Application of Artificial Light Harvesting System Based on Supramolecular Self‐assembly. ChemistrySelect 2023. [DOI: 10.1002/slct.202202979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Liu Jiahong
- School of Chemistry and Chemical Engineering South China University of Technology GuangZhou GuangDong China
| | - Sun Jialu
- School of Chemistry and Chemical Engineering South China University of Technology GuangZhou GuangDong China
| | - Pan Chenhui
- School of Chemistry and Chemical Engineering South China University of Technology GuangZhou GuangDong China
| | - Yang Guoze
- School of Chemistry and Chemical Engineering South China University of Technology GuangZhou GuangDong China
| |
Collapse
|
6
|
Construction and application of the polyelectrolyte-based sequential artificial light-harvesting system. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|