1
|
Chen Y, Gao Z, Hoo SA, Tipnis V, Wang R, Mitevski I, Hitchcock D, Simmons KL, Sun YP, Sarntinoranont M, Huang Y. Sequential Dual Alignments Introduce Synergistic Effect on Hexagonal Boron Nitride Platelets for Superior Thermal Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314097. [PMID: 38466829 DOI: 10.1002/adma.202314097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/21/2024] [Indexed: 03/13/2024]
Abstract
Planarly aligning 2D platelets is challenging due to their additional orientational freedom compared to 1D materials. This study reports a sequential dual-alignment approach, employing an extrusion-printing-induced shear force and rotating-magnetic-field-induced force couple for platelet planarly alignment in a yield-stress support bath. It is hypothesized that the partial alignment induced by a directional shear force facilitates subsequent axial rotation of the platelets for planar alignment under an external force couple, resulting in a synergistic alignment effect. This sequential dual-alignment approach achieves better planar alignment of 2D modified hexagonal boron nitride (mhBN). Specifically, the thermal conductivity of the 40 wt% mhBN/epoxy composite is significantly higher (692%) than that of unaligned composites, surpassing the cumulative effect of individual methods (only 133%) with a 5 times more synergistic effect. For 30, 40, and 50 wt% mhBN composites, the thermal conductivity values (5.9, 9.5, and 13.8 W m-1 K-1) show considerable improvement compared to the previously reported highest values (5.3, 6.6, and 8.6 W m-1 K-1). Additionally, a 3D mhBN/epoxy heat sink is printed and evaluated to demonstrate the feasibility of device fabrication. The approach enables the planar alignment of electrically or thermally conducting 2D fillers during 3D fabrication.
Collapse
Affiliation(s)
- Yunxia Chen
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Zhiming Gao
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
| | - Simon A Hoo
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Varun Tipnis
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Renjing Wang
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Ivan Mitevski
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Dale Hitchcock
- Savannah River National Laboratory, Savannah River Site, Aiken, SC, 29808, USA
| | - Kevin L Simmons
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Ya-Ping Sun
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA
| | - Malisa Sarntinoranont
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Yong Huang
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, 32611, USA
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
2
|
Dai CF, Khoruzhenko O, Zhang C, Zhu QL, Jiao D, Du M, Breu J, Zhao P, Zheng Q, Wu ZL. Magneto-Orientation of Magnetic Double Stacks for Patterned Anisotropic Hydrogels with Multiple Responses and Modulable Motions. Angew Chem Int Ed Engl 2022; 61:e202207272. [PMID: 35749137 PMCID: PMC9541020 DOI: 10.1002/anie.202207272] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 01/03/2023]
Abstract
Reported here is a multi-response anisotropic poly(N-isopropylacrylamide) hydrogel developed by using a rotating magnetic field to align magnetic double stacks (MDSs) that are fixed by polymerization. The magneto-orientation of MDSs originates from the unique structure with γ-Fe2 O3 nanoparticles sandwiched by two silicate nanosheets. The resultant gels not only exhibit anisotropic optical and mechanical properties but also show anisotropic responses to temperature and light. Gels with complex ordered structures of MDSs are further devised by multi-step magnetic orientation and photolithographic polymerization. These gels show varied birefringence patterns with potentials as information materials, and can deform into specific configurations upon stimulations. Multi-gait motions are further realized in the patterned gel through dynamic deformation under spatiotemporal light and friction regulation by imposed magnetic force. The magneto-orientation assisted fabrication of hydrogels with anisotropic structures and additional functions should bring opportunities for gel materials in biomedical devices, soft actuators/robots, etc.
Collapse
Affiliation(s)
- Chen Fei Dai
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Olena Khoruzhenko
- The State Key Laboratory of Fluid Power Transmission and Control SystemsKey Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang UniversityHangzhou310028China
| | - Chengqian Zhang
- The State Key Laboratory of Fluid Power Transmission and Control SystemsKey Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang UniversityHangzhou310028China
| | - Qing Li Zhu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Dejin Jiao
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Miao Du
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Josef Breu
- Bavarian Polymer Institute and Department of ChemistryUniversity of BayreuthUniversitätsstrasse 3095440BayreuthGermany
| | - Peng Zhao
- The State Key Laboratory of Fluid Power Transmission and Control SystemsKey Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang UniversityHangzhou310028China
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| |
Collapse
|
3
|
Dai CF, Khoruzhenko O, Zhang C, Zhu QL, Jiao D, Du M, Breu J, Zhao P, Zheng Q, Wu ZL. Magneto‐Orientation of Magnetic Double Stacks for Patterned Anisotropic Hydrogels with Multiple Responses and Modulable Motions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chen Fei Dai
- Zhejiang University Department of Polymer Science and Engineering CHINA
| | - Olena Khoruzhenko
- Bayreuth University: Universitat Bayreuth Bavarian Polymer Institute and Department of Chemistry GERMANY
| | | | - Qing Li Zhu
- Zhenjiang University: Zhejiang University Department of Polymer Science and Engineering CHINA
| | - Dejin Jiao
- Zhejiang University Department of Polymer Science and Engineering, CHINA
| | - Miao Du
- Zhenjiang University: Zhejiang University Department of Polymer Science and Engineering CHINA
| | - Josef Breu
- Universität Bayreuth Lehrstuhl für Anorganische Chemie I Universitatsstraße 30 95440 Bayreuth GERMANY
| | - Peng Zhao
- Zhenjiang University: Zhejiang University School of Mechanical Engineering CHINA
| | - Qiang Zheng
- Zhenjiang University: Zhejiang University Department of Polymer Science and Engineering CHINA
| | - Zi Liang Wu
- Zhenjiang University: Zhejiang University Department of Polymer Science and Engineering CHINA
| |
Collapse
|
4
|
Le Ferrand H, Riley KS, Arrieta AF. Plant-inspired multi-stimuli and multi-temporal morphing composites. BIOINSPIRATION & BIOMIMETICS 2022; 17:046002. [PMID: 35349991 DOI: 10.1088/1748-3190/ac61ea] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Plants are inspiring models for adaptive, morphing systems. In addition to their shape complexity, they can respond to multiple stimuli and exhibit both fast and slow motion. We attempt to recreate these capabilities in synthetic structures, proposing a fabrication and design scheme for multi-stimuli and multi-temporal responsive plant-inspired composites. We leverage a hierarchical, spatially tailored microstructural and compositional scheme to enable both fast morphing through bistability and slow morphing through diffusion processes. The composites consisted of a hydrogel layer made of gelatine and an architected particle-reinforced epoxy bilayer. Using magnetic fields to achieve spatially distributed orientations of magnetically responsive platelets in each epoxy layer, complex bilayer architectural patterns in various geometries were realised. This feature enabled the study of plant-inspired complex designs,viafinite element analysis and experiments. We present the design and fabrication strategy utilizing the material properties of the composites. The deformations and temporal responses of the resulting composites are analysed using digital image correlation. Finally, we model and experimentally demonstrate plant-inspired composite shells whose stable shapes closely mimic those of the Venus flytrap, while maintaining the multi-stimuli and multi-temporal responses of the materials. The key to achieving this is to tune the local in-plane orientations of the reinforcing particles in the bilayer shapes, to induce distributed in-plane mechanical properties and shrinkage. How these particles should be distributed is determined using finite element modelling. The work presented in this study can be applied to autonomous applications such as robotic systems.
Collapse
Affiliation(s)
- Hortense Le Ferrand
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Katherine S Riley
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, United States of America
| | - Andres F Arrieta
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, United States of America
| |
Collapse
|