1
|
Alvim T, Telo da Gama MM, Coelho RCV. Solute dispersion in pre-turbulent confined active nematics. SOFT MATTER 2025; 21:2569-2577. [PMID: 39964286 DOI: 10.1039/d4sm01175a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
We investigate the dispersion of solutes in active nematic fluids confined to narrow channels based on simulations of nematohydrodynamics. The study focuses on two pre-turbulent regimes: oscillatory flow, with net mass flux, and dancing flow, without net flux. Non-diffusive tracers exhibit markedly different behaviors in oscillatory and dancing flows. By contrast, the hydrodynamic dispersion of solutes driven by active flows, both in the oscillatory and dancing flows, are similar and can be described by an extension of the Taylor-Aris law. This study contributes to our understanding of micromixing in active flows both in nature and in applications.
Collapse
Affiliation(s)
- Tomás Alvim
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisboa, Portugal
| | - Margarida M Telo da Gama
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisboa, Portugal
| | - Rodrigo C V Coelho
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisboa, Portugal
| |
Collapse
|
2
|
Ardaševa A, Vélez-Cerón I, Pedersen MC, Ignés-Mullol J, Sagués F, Doostmohammadi A. Beyond Dipolar Activity: Quadrupolar Stress Drives Collapse of Nematic Order on Frictional Substrates. PHYSICAL REVIEW LETTERS 2025; 134:088301. [PMID: 40085853 DOI: 10.1103/physrevlett.134.088301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/04/2024] [Accepted: 01/28/2025] [Indexed: 03/16/2025]
Abstract
The field of active nematics has traditionally employed descriptions based on dipolar activity. However, it is theoretically predicted that interactions with a substrate, prevalent in most biological systems, lead to novel forms of activity, such as quadrupolar activity, that are governed by hydrodynamic screening. Here, combining experiments and numerical simulations, we show that upon light-induced solidification of the underlying medium, microtubule-kinesin mixtures undergo a transformation that leads to a biphasic active suspension. Using an active lyotropic model, we prove that the transition is governed by screening effects that alter the dominant form of active stress. Specifically, the combined effect of friction and quadrupolar activity leads to a hierarchical folding that follows the intrinsic bend instability of the active nematic layer. Our results demonstrate the dynamics of the collapse of orientational order in active nematics and present a new route for controlling active matter by modifying the activity through changing the surrounding environment.
Collapse
Affiliation(s)
- Aleksandra Ardaševa
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen, Denmark
| | - Ignasi Vélez-Cerón
- Universitat de Barcelona, Department of Materials Science and Physical Chemistry, Barcelona 08028, Spain
- Universitat de Barcelona, Institute of Nanoscience and Nanotechnology, IN2UB, Barcelona 08028, Spain
| | | | - Jordi Ignés-Mullol
- Universitat de Barcelona, Department of Materials Science and Physical Chemistry, Barcelona 08028, Spain
- Universitat de Barcelona, Institute of Nanoscience and Nanotechnology, IN2UB, Barcelona 08028, Spain
| | - Francesc Sagués
- Universitat de Barcelona, Department of Materials Science and Physical Chemistry, Barcelona 08028, Spain
- Universitat de Barcelona, Institute of Nanoscience and Nanotechnology, IN2UB, Barcelona 08028, Spain
| | - Amin Doostmohammadi
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen, Denmark
| |
Collapse
|
3
|
Vaidya JP, Shendruk TN, Thampi SP. Active nematics in corrugated channels. SOFT MATTER 2024; 20:8230-8245. [PMID: 39377100 DOI: 10.1039/d4sm00760c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Active nematic fluids exhibit complex dynamics in both bulk and in simple confining geometries. However, complex confining geometries could have substantial impact on active spontaneous flows. Using multiparticle collision dynamics simulations adapted for active nematic particles, we study the dynamic behaviour of an active nematic fluid confined in a corrugated channel. The transition from a quiescent state to a spontaneous flow state occurs from a weak swirling flow to a strong coherent flow due to the presence of curved-wall induced active flows. We show that the active nematic fluid flows in corrugated channels can be understood in two different ways: (i) as the result of an early or delayed flow transition when compared with that in a flat-walled channel of appropriate width and (ii) boundary-induced active flows in the corrugations providing an effective slip velocity to the coherent flows in the bulk. Thus, our work illustrates the crucial role of corrugations of the confining boundary in dictating the flow transition and flow states of active fluids.
Collapse
Affiliation(s)
- Jaideep P Vaidya
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Tyler N Shendruk
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Sumesh P Thampi
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
4
|
Partovifard A, Grawitter J, Stark H. Controlling active turbulence by activity patterns. SOFT MATTER 2024; 20:1800-1814. [PMID: 38305449 DOI: 10.1039/d3sm01050c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
By patterning activity in space, one can control active turbulence. To show this, we use Doi's hydrodynamic equations of a semidilute solution of active rods. A linear stability analysis reveals the resting isotropic fluid to be unstable above an absolute pusher activity. The emergent activity-induced paranematic state displays active turbulence, which we characterize by different quantities including the energy spectrum, which shows the typical power-law decay with exponent -4. Then, we control the active turbulence by a square lattice of circular spots where activity is switched off. In the parameter space lattice constant versus surface-to-surface distance of the spots, we identify different flow states. Most interestingly, for lattice constants below the vorticity correlation length and for spot distances smaller than the nematic coherence length, we observe a multi-lane flow state, where flow lanes with alternating flow directions are separated by a street of vortices. The flow pattern displays pronounced multistability and also appears transiently at the transition to the isotropic active-turbulence state. At larger lattice constants a trapped vortex state is identified with a non-Gaussian vorticity distribution due to the low flow vorticity at the spots. It transitions to conventional active turbulence for increasing spot distance.
Collapse
Affiliation(s)
- Arghavan Partovifard
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| | - Josua Grawitter
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| | - Holger Stark
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| |
Collapse
|
5
|
Ye H, Ouyang Z, Lin J. On particle motion in a confined square domain filled with active fluids. SOFT MATTER 2024; 20:1786-1799. [PMID: 38305105 DOI: 10.1039/d3sm01321a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The motion of passive particles in a confined square domain filled with active fluids has been numerically simulated using a direct-fictitious domain method. The ratio of particle diameter to the side length of the square domain (dp/L) is adopted to classify the degree of confinement (i.e., strong or weak confinement). The translational mean-squared displacement (MSDT) of weakly-confined particles scales well with the reported theoretical and experimental results in a short time and eventually reaches a plateau because of the confined environment. Additionally, the radial probability densities of the particle positions gradually increase with increasing distance from the center of the square domain at relatively high activity levels, displaying an apparent rise near the boundary and maximize near the corner. Conversely, the strongly confined particles migrate toward the center of the square domain or approach the corner with continuous rotation. In addition, the localized minima of the angular velocity of the particles show a periodic behavior, with the vortices periodically becoming more organized. Moreover, with increasing activity, two distinct linearly correlated regimes emerge in the relationship between the particle's rotational velocity and the activity. A comprehensive analysis of the collective dynamics reveals that the cutoff length is Rc ≈ 0.19(2.375dp), pointing to the distance at which the velocities of two particles are uncorrelated. Moreover, the spatial correlation function (Ip) shows a small peak at Rr ≈ 0.12(1.5dp), suggesting a relatively strong correlation between a given particle and another particle located at a distance Rr from it. Interestingly, both Rc and Rr are smaller than those observed in an unbounded flow, which indicates that boundary confinement significantly influences the ability of the particles to form coherent structures.
Collapse
Affiliation(s)
- Hao Ye
- Department of Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 310027 Hangzhou, China.
| | - Zhenyu Ouyang
- Zhejiang Provincial Engineering Research Center for the Safety of Pressure Vessel and Pipeline, 315210 Ningbo, China.
| | - Jianzhong Lin
- Department of Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 310027 Hangzhou, China.
- Zhejiang Provincial Engineering Research Center for the Safety of Pressure Vessel and Pipeline, 315210 Ningbo, China.
| |
Collapse
|
6
|
Luo W, Baskaran A, Pelcovits RA, Powers TR. Flow states of two dimensional active gels driven by external shear. SOFT MATTER 2024; 20:738-753. [PMID: 38168972 DOI: 10.1039/d3sm00919j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Using a minimal hydrodynamic model, we theoretically and computationally study the Couette flow of active gels in straight and annular two-dimensional channels subject to an externally imposed shear. The gels are isotropic in the absence of externally- or activity-driven shear, but have nematic order that increases with shear rate. Using the finite element method, we determine the possible flow states for a range of activities and shear rates. Linear stability analysis of an unconfined gel in a straight channel shows that an externally imposed shear flow can stabilize an extensile fluid that would be unstable to spontaneous flow in the absence of the shear flow, and destabilize a contractile fluid that would be stable against spontaneous flow in the absence of shear flow. These results are in rough agreement with the stability boundaries between the base shear flow state and the nonlinear flow states that we find numerically for a confined active gel. For extensile fluids, we find three kinds of nonlinear flow states in the range of parameters we study: unidirectional flows, oscillatory flows, and dancing flows. To highlight the activity-driven spontaneous component of the nonlinear flows, we characterize these states by the average volumetric flow rate and the wall stress. For contractile fluids, we only find the linear shear flow and a nonlinear unidirectional flow in the range of parameters that we studied. For large magnitudes of the activity, the unidirectional contractile flow develops a boundary layer. Our analysis of annular channels shows how curvature of the streamlines in the base flow affects the transitions among flow states.
Collapse
Affiliation(s)
- Wan Luo
- School of Engineering, Brown University, Providence, RI 02912, USA.
- Center for Fluid Mechanics, Brown University, Providence, RI 02912, USA
| | - Aparna Baskaran
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02453, USA
| | - Robert A Pelcovits
- Department of Physics, Brown University, Providence, RI 02912, USA
- Brown Theoretical Physics Center, Brown University, Providence, RI 02912, USA
| | - Thomas R Powers
- School of Engineering, Brown University, Providence, RI 02912, USA.
- Center for Fluid Mechanics, Brown University, Providence, RI 02912, USA
- Department of Physics, Brown University, Providence, RI 02912, USA
- Brown Theoretical Physics Center, Brown University, Providence, RI 02912, USA
| |
Collapse
|
7
|
Mitchell KA, Sabbir MMH, Geumhan K, Smith SA, Klein B, Beller DA. Maximally mixing active nematics. Phys Rev E 2024; 109:014606. [PMID: 38366395 DOI: 10.1103/physreve.109.014606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/30/2023] [Indexed: 02/18/2024]
Abstract
Active nematics are an important new paradigm in soft condensed matter systems. They consist of rodlike components with an internal driving force pushing them out of equilibrium. The resulting fluid motion exhibits chaotic advection, in which a small patch of fluid is stretched exponentially in length. Using simulation, this paper shows that this system can exhibit stable periodic motion when confined to a sufficiently small square with periodic boundary conditions. Moreover, employing tools from braid theory, we show that this motion is maximally mixing, in that it optimizes the (dimensionless) "topological entropy"-the exponential stretching rate of a material line advected by the fluid. That is, this periodic motion of the defects, counterintuitively, produces more chaotic mixing than chaotic motion of the defects. We also explore the stability of the periodic state. Importantly, we show how to stabilize this orbit into a larger periodic tiling, a critical necessity for it to be seen in future experiments.
Collapse
Affiliation(s)
- Kevin A Mitchell
- Physics Department, University of California, Merced, California 95344, USA
| | | | - Kevin Geumhan
- Physics Department, University of California, Merced, California 95344, USA
| | - Spencer A Smith
- Physics Department, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| | - Brandon Klein
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Daniel A Beller
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
8
|
Mori F, Bhattacharyya S, Yeomans JM, Thampi SP. Viscoelastic confinement induces periodic flow reversals in active nematics. Phys Rev E 2023; 108:064611. [PMID: 38243430 DOI: 10.1103/physreve.108.064611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/22/2023] [Indexed: 01/21/2024]
Abstract
We use linear stability analysis and hybrid lattice Boltzmann simulations to study the dynamical behavior of an active nematic confined in a channel made of viscoelastic material. We find that the quiescent, ordered active nematic is unstable above a critical activity. The transition is to a steady flow state for high elasticity of the channel surroundings. However, below a threshold elastic modulus, the system produces spontaneous oscillations with periodic flow reversals. We provide a phase diagram that highlights the region where time-periodic oscillations are observed and explain how they are produced by the interplay of activity and viscoelasticity. Our results suggest experiments to study the role of viscoelastic confinement in the spatiotemporal organization and control of active matter.
Collapse
Affiliation(s)
- Francesco Mori
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Saraswat Bhattacharyya
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Julia M Yeomans
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Sumesh P Thampi
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai-36, India
| |
Collapse
|
9
|
Thampi SP. Channel Confined Active Nematics. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Keogh RR, Chandragiri S, Loewe B, Ala-Nissila T, Thampi SP, Shendruk TN. Helical flow states in active nematics. Phys Rev E 2022; 106:L012602. [PMID: 35974522 DOI: 10.1103/physreve.106.l012602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
We show that confining extensile nematics in three-dimensional (3D) channels leads to the emergence of two self-organized flow states with nonzero helicity. The first is a pair of braided antiparallel streams-this double helix occurs when the activity is moderate, anchoring negligible, and reduced temperature high. The second consists of axially aligned counter-rotating vortices-this grinder train arises between spontaneous axial streaming and the vortex lattice. These two unanticipated helical flow states illustrate the potential of active fluids to break symmetries and form complex but organized spatiotemporal structures in 3D fluidic devices.
Collapse
Affiliation(s)
- Ryan R Keogh
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Santhan Chandragiri
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Benjamin Loewe
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Tapio Ala-Nissila
- MSP Group, QTF Centre of Excellence, Department of Applied Physics, Aalto University, P.O. Box 11000, FI-00076 Aalto, Espoo, Finland
- Interdisciplinary Centre for Mathematical Modelling, Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Sumesh P Thampi
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Tyler N Shendruk
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| |
Collapse
|