1
|
Mi CH, Qi XY, Zhou YW, Ding YW, Wei DX, Wang Y. Advances in medical polyesters for vascular tissue engineering. DISCOVER NANO 2024; 19:125. [PMID: 39115796 PMCID: PMC11310390 DOI: 10.1186/s11671-024-04073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/25/2024] [Indexed: 08/11/2024]
Abstract
Blood vessels are highly dynamic and complex structures with a variety of physiological functions, including the transport of oxygen, nutrients, and metabolic wastes. Their normal functioning involves the close and coordinated cooperation of a variety of cells. However, adverse internal and external environmental factors can lead to vascular damage and the induction of various vascular diseases, including atherosclerosis and thrombosis. This can have serious consequences for patients, and there is an urgent need for innovative techniques to repair damaged blood vessels. Polyesters have been extensively researched and used in the treatment of vascular disease and repair of blood vessels due to their excellent mechanical properties, adjustable biodegradation time, and excellent biocompatibility. Given the high complexity of vascular tissues, it is still challenging to optimize the utilization of polyesters for repairing damaged blood vessels. Nevertheless, they have considerable potential for vascular tissue engineering in a range of applications. This summary reviews the physicochemical properties of polyhydroxyalkanoate (PHA), polycaprolactone (PCL), poly-lactic acid (PLA), and poly(lactide-co-glycolide) (PLGA), focusing on their unique applications in vascular tissue engineering. Polyesters can be prepared not only as 3D scaffolds to repair damage as an alternative to vascular grafts, but also in various forms such as microspheres, fibrous membranes, and nanoparticles to deliver drugs or bioactive ingredients to damaged vessels. Finally, it is anticipated that further developments in polyesters will occur in the near future, with the potential to facilitate the wider application of these materials in vascular tissue engineering.
Collapse
Affiliation(s)
- Chen-Hui Mi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Xin-Ya Qi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Yan-Wen Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Yan-Wen Ding
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
- School of Clinical Medicine, Chengdu University, Chengdu, China.
- Shaanxi Key Laboratory for Carbon-Neutral Technology, Xi'an, 710069, China.
| | - Yong Wang
- Department of Interventional Radiology and Vascular Surgery, Second Affiliated Hospital of Hainan Medical University, Haikou, China.
| |
Collapse
|
2
|
Sun F, Shen Z, Zhang B, Lu Y, Shan Y, Wu Q, Yuan L, Zhu J, Pan S, Wang Z, Wu C, Zhang G, Yang W, Xu X, Shi H. Biomimetic in situ tracheal microvascularization for segmental tracheal reconstruction in one-step. Bioeng Transl Med 2023; 8:e10534. [PMID: 37476057 PMCID: PMC10354772 DOI: 10.1002/btm2.10534] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 07/22/2023] Open
Abstract
Formation of functional and perfusable vascular network is critical to ensure the long-term survival and functionality of the engineered tissue tracheae after transplantation. However, the greatest challenge in tracheal-replacement therapy is the promotion of tissue regeneration by rapid graft vascularization. Traditional prevascularization methods for tracheal grafts typically utilize omentum or muscle flap wrapping, which requires a second operation; vascularized segment tracheal orthotopic transplantation in one step remains difficult. This study proposes a method to construct a tissue-engineered tracheal graft, which directly forms the microvascular network after orthotopic transplantation in vivo. The focus of this study was the preparation of a hybrid tracheal graft that is non-immunogenic, has good biomechanical properties, supports cell proliferation, and quickly vascularizes. The results showed that vacuum-assisted decellularized trachea-polycaprolactone hybrid scaffold could match most of the above requirements as closely as possible. Furthermore, endothelial progenitor cells (EPCs) were extracted and used as vascularized seed cells and seeded on the surfaces of hybrid grafts before and during the tracheal orthotopic transplantation. The results showed that the microvascularized tracheal grafts formed maintained the survival of the recipient, showing a satisfactory therapeutic outcome. This is the first study to utilize EPCs for microvascular construction of long-segment trachea in one-step; the approach represents a promising method for microvascular tracheal reconstruction.
Collapse
Affiliation(s)
- Fei Sun
- Clinical Medical CollegeYangzhou UniversityYangzhouChina
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhou UniversityYangzhouChina
| | - Zhiming Shen
- Clinical Medical CollegeYangzhou UniversityYangzhouChina
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhou UniversityYangzhouChina
| | - Boyou Zhang
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhou UniversityYangzhouChina
| | - Yi Lu
- Clinical Medical CollegeYangzhou UniversityYangzhouChina
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhou UniversityYangzhouChina
| | - Yibo Shan
- Clinical Medical CollegeYangzhou UniversityYangzhouChina
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhou UniversityYangzhouChina
| | - Qiang Wu
- Clinical Medical CollegeYangzhou UniversityYangzhouChina
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhou UniversityYangzhouChina
| | - Lei Yuan
- Clinical Medical CollegeYangzhou UniversityYangzhouChina
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhou UniversityYangzhouChina
| | - Jianwei Zhu
- Clinical Medical CollegeYangzhou UniversityYangzhouChina
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhou UniversityYangzhouChina
| | - Shu Pan
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Zhihao Wang
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhou UniversityYangzhouChina
| | - Cong Wu
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhou UniversityYangzhouChina
| | - Guozhong Zhang
- Clinical Medical CollegeYangzhou UniversityYangzhouChina
| | - Wenlong Yang
- Clinical Medical CollegeYangzhou UniversityYangzhouChina
| | - Xiangyu Xu
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhou UniversityYangzhouChina
| | - Hongcan Shi
- Clinical Medical CollegeYangzhou UniversityYangzhouChina
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhou UniversityYangzhouChina
| |
Collapse
|
3
|
Zhang Y, Zhong Y, Liu W, Zheng F, Zhao Y, Zou L, Liu X. PFKFB3-mediated glycometabolism reprogramming modulates endothelial differentiation and angiogenic capacity of placenta-derived mesenchymal stem cells. Stem Cell Res Ther 2022; 13:391. [PMID: 35918720 PMCID: PMC9344722 DOI: 10.1186/s13287-022-03089-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/25/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have a great potential ability for endothelial differentiation, contributing to an effective means of therapeutic angiogenesis. Placenta-derived mesenchymal stem cells (PMSCs) have gradually attracted attention, while the endothelial differentiation has not been fully evaluated in PMSCs. Metabolism homeostasis plays an important role in stem cell differentiation, but less is known about the glycometabolic reprogramming during the PMSCs endothelial differentiation. Hence, it is critical to investigate the potential role of glycometabolism reprogramming in mediating PMSCs endothelial differentiation. METHODS Dil-Ac-LDL uptake assay, flow cytometry, and immunofluorescence were all to verify the endothelial differentiation in PMSCs. Seahorse XF Extracellular Flux Analyzers, Mito-tracker red staining, Mitochondrial membrane potential (MMP), lactate secretion assay, and transcriptome approach were to assess the variation of mitochondrial respiration and glycolysis during the PMSCs endothelial differentiation. Glycolysis enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) was considered a potential modulator for endothelial differentiation in PMSCs by small interfering RNA. Furthermore, transwell, in vitro Matrigel tube formation, and in vivo Matrigel plug assays were performed to evaluate the effect of PFKFB3-induced glycolysis on angiogenic capacities in this process. RESULTS PMSCs possessed the superior potential of endothelial differentiation, in which the glycometabolic preference for glycolysis was confirmed. Moreover, PFKFB3-induced glycometabolism reprogramming could modulate the endothelial differentiation and angiogenic abilities of PMSCs. CONCLUSIONS Our results revealed that PFKFB3-mediated glycolysis is important for endothelial differentiation and angiogenesis in PMSCs. Our understanding of cellular glycometabolism and its regulatory effects on endothelial differentiation may propose and improve PMSCs as a putative strategy for clinical therapeutic angiogenesis.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yanqi Zhong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Weifang Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Fanghui Zheng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yin Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Li Zou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Xiaoxia Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
4
|
Therapeutic Strategy of Mesenchymal-Stem-Cell-Derived Extracellular Vesicles as Regenerative Medicine. Int J Mol Sci 2022; 23:ijms23126480. [PMID: 35742923 PMCID: PMC9224400 DOI: 10.3390/ijms23126480] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer membrane particles that play critical roles in intracellular communication through EV-encapsulated informative content, including proteins, lipids, and nucleic acids. Mesenchymal stem cells (MSCs) are pluripotent stem cells with self-renewal ability derived from bone marrow, fat, umbilical cord, menstruation blood, pulp, etc., which they use to induce tissue regeneration by their direct recruitment into injured tissues, including the heart, liver, lung, kidney, etc., or secreting factors, such as vascular endothelial growth factor or insulin-like growth factor. Recently, MSC-derived EVs have been shown to have regenerative effects against various diseases, partially due to the post-transcriptional regulation of target genes by miRNAs. Furthermore, EVs have garnered attention as novel drug delivery systems, because they can specially encapsulate various target molecules. In this review, we summarize the regenerative effects and molecular mechanisms of MSC-derived EVs.
Collapse
|
5
|
Zhang L, Wan Z, Yuan Z, Yang J, Zhang Y, Cai Q, Huang J, Zhao Y. Construction of multifunctional cell aggregates in angiogenesis and osteogenesis through incorporating hVE-cad-Fc-modified PLGA/β-TCP microparticles for enhancing bone regeneration. J Mater Chem B 2022; 10:3344-3356. [PMID: 35380570 DOI: 10.1039/d2tb00359g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Multicellular aggregates have been widely utilized for regenerative medicine; however, the heterogeneous structure and undesired bioactivity of cell-only aggregates hinder their clinical translation. In this study, we fabricated an innovative kind of microparticle-integrated cellular aggregate with multifunctional activities in angiogenesis and osteogenesis, by combining stem cells from human exfoliated deciduous teeth (SHEDs) and bioactive composite microparticles. The poly(lactide-co-glycolide) (PLGA)-based bioactive microparticles (PTV microparticles) were ∼15 μm in diameter, with dispersed β-tricalcium phosphate (β-TCP) nanoparticles and surface-modified vascular endothelialcadherin fusion protein (hVE-cad-Fc). After co-culturing with microparticles in U-bottomed culture plates, SHEDs could firmly attach to the microparticles with a homogeneous distribution. The PTV microparticle-integrated SHED aggregates (PTV/SHED aggregates) showed significant positive CD31 and ALP expression, as well as the significantly upregulated osteogenesis makers (Runx2, ALP, and OCN) and angiogenesis makers (Ang-1 and CD31), compared with PLGA, PLGA/β-TCP (PT) and PLGA/hVE-cad-Fc (PV) microparticle-integrated SHED aggregates. Finally, in mice, 3 mm calvarial defects filled with the PTV microparticle-integrated SHED aggregates achieved abundant vascularized neo-bone regeneration within 4 weeks. Overall, we believe that these multifunctional PTV/SHED aggregates could be used as modules for bottom-up regenerative medicine, and provide a promising method for vascularized bone regeneration.
Collapse
Affiliation(s)
- Linxue Zhang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, PR China.
| | - Zhuo Wan
- State Key Laboratory of Organic-Inorganic Composites & Beijing Laboratory of Biomedical Materials & Beijing University of Chemical Technology, Beijing 100029, PR China. .,Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, PR China.
| | - Zuoying Yuan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, PR China.
| | - Jun Yang
- The Key Laboratory of Bioactive Materials, Ministry of Education & College of Life Science, Nankai University, Tianjin 300071, PR China
| | - Yunfan Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, PR China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites & Beijing Laboratory of Biomedical Materials & Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, PR China.
| | - Yuming Zhao
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, PR China.
| |
Collapse
|
6
|
Guo B, Qi M, Huang S, Zhuo R, Zhang W, Zhang Y, Xu M, Liu M, Guan T, Liu Y. Cadherin-12 Regulates Neurite Outgrowth Through the PKA/Rac1/Cdc42 Pathway in Cortical Neurons. Front Cell Dev Biol 2021; 9:768970. [PMID: 34820384 PMCID: PMC8606577 DOI: 10.3389/fcell.2021.768970] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/11/2021] [Indexed: 12/22/2022] Open
Abstract
Cadherins play an important role in tissue homeostasis, as they are responsible for cell-cell adhesion during embryogenesis, tissue morphogenesis, and differentiation. In this study, we identified Cadherin-12 (CDH12), which encodes a type II classical cadherin, as a gene that promotes neurite outgrowth in an in vitro model of neurons with differentiated intrinsic growth ability. First, the effects of CDH12 on neurons were evaluated via RNA interference, and the results indicated that the knockdown of CDH12 expression restrained the axon extension of E18 neurons. The transcriptome profile of neurons with or without siCDH12 treatment revealed a set of pathways positively correlated with the effect of CDH12 on neurite outgrowth. We further revealed that CDH12 affected Rac1/Cdc42 phosphorylation in a PKA-dependent manner after testing using H-89 and 8-Bromo-cAMP sodium salt. Moreover, we investigated the expression of CDH12 in the brain, spinal cord, and dorsal root ganglia (DRG) during development using immunofluorescence staining. After that, we explored the effects of CDH12 on neurite outgrowth in vivo. A zebrafish model of CDH12 knockdown was established using the NgAgo-gDNA system, and the vital role of CDH12 in peripheral neurogenesis was determined. In summary, our study is the first to report the effect of CDH12 on axonal extension in vitro and in vivo, and we provide a preliminary explanation for this mechanism.
Collapse
Affiliation(s)
- Beibei Guo
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mengwei Qi
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Shuai Huang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Run Zhuo
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wenxue Zhang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yufang Zhang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Man Xu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Tuchen Guan
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|