1
|
Bu Z, Huang L, Li S, Tian Q, Tang Z, Diao Q, Chen X, Liu J, Niu X. Introducing molecular imprinting onto nanozymes: toward selective catalytic analysis. Anal Bioanal Chem 2024; 416:5859-5870. [PMID: 38308711 DOI: 10.1007/s00216-024-05183-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/21/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
The discovery of enzyme-like catalytic characteristics in nanomaterials triggers the generation of nanozymes and their multifarious applications. As a class of artificial mimetic enzymes, nanozymes are widely recognized to have better stability and lower cost than natural bio-enzymes, but the lack of catalytic specificity hinders their wider use. To solve the problem, several potential strategies are explored, among which molecular imprinting attracts much attention because of its powerful capacity for creating specific binding cavities as biomimetic receptors. Attractively, introducing molecularly imprinted polymers (MIPs) onto nanozyme surfaces can make an impact on the latter's catalytic activity. As a result, in recent years, MIPs featuring universal fabrication, low cost, and good stability have been intensively integrated with nanozymes for biochemical detection. In this critical review, we first summarize the general fabrication of nanozyme@MIPs, followed by clarifying the potential effects of molecular imprinting on the catalytic performance of nanozymes in terms of selectivity and activity. Typical examples are emphatically discussed to highlight the latest progress of nanozyme@MIPs applied in catalytic analysis. In the end, personal viewpoints on the future directions of nanozyme@MIPs are presented, to provide a reference for studying the interactions between MIPs and nanozymes and attract more efforts to advance this promising area.
Collapse
Affiliation(s)
- Zhijian Bu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Lian Huang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Shu Li
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Qingzhen Tian
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Zheng Tang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Qiaoqiao Diao
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Xinyu Chen
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Jinjin Liu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Xiangheng Niu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China.
- Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
- State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, Hunan Ecology and Environment Monitoring Center, Changsha, 410019, People's Republic of China.
| |
Collapse
|
2
|
Dong Y, Wang J, Chen L, Chen H, Dang S, Li F. Aptamer-based assembly systems for SARS-CoV-2 detection and therapeutics. Chem Soc Rev 2024; 53:6830-6859. [PMID: 38829187 DOI: 10.1039/d3cs00774j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Nucleic acid aptamers are oligonucleotide chains with molecular recognition properties. Compared with antibodies, aptamers show advantages given that they are readily produced via chemical synthesis and elicit minimal immunogenicity in biomedicine applications. Notably, aptamer-encoded nucleic acid assemblies further improve the binding affinity of aptamers with the targets due to their multivalent synergistic interactions. Specially, aptamers can be engineered with special topological arrangements in nucleic acid assemblies, which demonstrate spatial and valence matching towards antigens on viruses, thus showing potential in the detection and therapeutic applications of viruses. This review presents the recent progress on the aptamers explored for SARS-CoV-2 detection and infection treatment, wherein applications of aptamer-based assembly systems are introduced in detail. Screening methods and chemical modification strategies for aptamers are comprehensively summarized, and the types of aptamers employed against different target domains of SARS-CoV-2 are illustrated. The evolution of aptamer-based assembly systems for the detection and neutralization of SARS-CoV-2, as well as the construction principle and characteristics of aptamer-based DNA assemblies are demonstrated. The typically representative works are presented to demonstrate how to assemble aptamers rationally and elaborately for specific applications in SARS-CoV-2 diagnosis and neutralization. Finally, we provide deep insights into the current challenges and future perspectives towards aptamer-based nucleic acid assemblies for virus detection and neutralization in nanomedicine.
Collapse
Affiliation(s)
- Yuhang Dong
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Jingping Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Ling Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Haonan Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Shuangbo Dang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Feng Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| |
Collapse
|
3
|
Yang DN, Wu SY, Deng HY, Zhang H, Shi S, Geng S. Blood Coagulation-Inspired Fibrin Hydrogel for Portable Detection of Thrombin Based on Personal Glucometer. BIOSENSORS 2024; 14:250. [PMID: 38785724 PMCID: PMC11118845 DOI: 10.3390/bios14050250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
As one of the biomarkers of coagulation system-related diseases, the detection of thrombin is of practical importance. Thus, this study developed a portable biosensor based on a personal glucometer for rapid detection of thrombin activity. Fibrinogen was used for the detection of thrombin, and the assay principle was inspired by the blood coagulation process, where thrombin hydrolyzes fibrinogen to produce a fibrin hydrogel, and the amount of invertase encapsulated in the fibrin hydrogel fluctuates in accordance with the activity of thrombin in the sample solution. The quantitative assay is conducted by measuring the amount of unencapsulated invertase available to hydrolyze the substrate sucrose, and the signal readout is recorded using a personal glucometer. A linear detection range of 0-0.8 U/mL of thrombin with a limit of detection of 0.04 U/mL was obtained based on the personal glucometer sensing platform. The results of the selectivity and interference experiments showed that the developed personal glucometer sensing platform is highly selective and accurate for thrombin activity. Finally, the reliability of the portable glucometer method for rapid thrombin detection in serum samples was investigated by measuring the recovery rate, which ranged from 92.8% to 107.7%. In summary, the fibrin hydrogel sensing platform proposed in this study offers a portable and versatile means for detecting thrombin using a personal glucometer. This approach not only simplifies the detection process, but also eliminates the need for large instruments and skilled operators, and substantially reduces detection costs.
Collapse
Affiliation(s)
- Dan-Ni Yang
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China; (D.-N.Y.); (H.-Y.D.)
| | - Shu-Yi Wu
- Basic Medical College, Chongqing College of Traditional Chinese Medicine, Chongqing 402360, China;
| | - Han-Yu Deng
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China; (D.-N.Y.); (H.-Y.D.)
| | - Hao Zhang
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China; (D.-N.Y.); (H.-Y.D.)
| | - Shan Shi
- The Central Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing 402360, China;
| | - Shan Geng
- The Central Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing 402360, China;
| |
Collapse
|
4
|
Geng L, Wang H, Liu M, Huang J, Wang G, Guo Z, Guo Y, Sun X. Research progress on preparation methods and sensing applications of molecularly imprinted polymer-aptamer dual recognition elements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168832. [PMID: 38036131 DOI: 10.1016/j.scitotenv.2023.168832] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
The aptamer (Apt) and the molecularly imprinted polymer (MIP), as effective substitutes for antibodies, have received widespread attention from researchers because of their creation. However, the low stability of Apt in harsh detection environment and the poor specificity of MIP have hindered their development. Therefore, some researchers have attempted to combine MIP with Apt to explore whether the effect of "1 + 1 > 2" can be achieved. Since its first report in 2013, MIP-Apt dual recognition elements have become a highly focused research direction in the fields of biology and chemistry. MIP-Apt dual recognition elements not only possess the high specificity of Apt and the high stability of MIP in harsh detection environment, but also have high sensitivity and affinity. They have been successfully applied in medical diagnosis, food safety, and environmental monitoring fields. This article provides a systematic overview of three preparation methods for MIP-Apt dual recognition elements and their application in eight different types of sensors. It also provides effective insights into the problems and development directions faced by MIP-Apt dual recognition elements.
Collapse
Affiliation(s)
- Lingjun Geng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Haifang Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Mengyue Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jingcheng Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Guangxian Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Zhen Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| |
Collapse
|
5
|
Wang Y, Fang L, Wang Y, Xiong Z. Current Trends of Raman Spectroscopy in Clinic Settings: Opportunities and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2300668. [PMID: 38072672 PMCID: PMC10870035 DOI: 10.1002/advs.202300668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/08/2023] [Indexed: 02/17/2024]
Abstract
Early clinical diagnosis, effective intraoperative guidance, and an accurate prognosis can lead to timely and effective medical treatment. The current conventional clinical methods have several limitations. Therefore, there is a need to develop faster and more reliable clinical detection, treatment, and monitoring methods to enhance their clinical applications. Raman spectroscopy is noninvasive and provides highly specific information about the molecular structure and biochemical composition of analytes in a rapid and accurate manner. It has a wide range of applications in biomedicine, materials, and clinical settings. This review primarily focuses on the application of Raman spectroscopy in clinical medicine. The advantages and limitations of Raman spectroscopy over traditional clinical methods are discussed. In addition, the advantages of combining Raman spectroscopy with machine learning, nanoparticles, and probes are demonstrated, thereby extending its applicability to different clinical phases. Examples of the clinical applications of Raman spectroscopy over the last 3 years are also integrated. Finally, various prospective approaches based on Raman spectroscopy in clinical studies are surveyed, and current challenges are discussed.
Collapse
Affiliation(s)
- Yumei Wang
- Department of NephrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Liuru Fang
- Hubei Province Key Laboratory of Systems Science in Metallurgical ProcessWuhan University of Science and TechnologyWuhan430081China
| | - Yuhua Wang
- Hubei Province Key Laboratory of Systems Science in Metallurgical ProcessWuhan University of Science and TechnologyWuhan430081China
| | - Zuzhao Xiong
- Hubei Province Key Laboratory of Systems Science in Metallurgical ProcessWuhan University of Science and TechnologyWuhan430081China
| |
Collapse
|
6
|
Zhang J, Xu D, Deng Z, Tan X, Guo D, Qiao Y, Li Y, Hou X, Wang S, Zhang J. Using tungsten oxide quantum-dot enhanced electrochemiluminescence to measure thrombin activity and screen its inhibitors. Talanta 2024; 267:125267. [PMID: 37801928 DOI: 10.1016/j.talanta.2023.125267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/27/2023] [Accepted: 10/01/2023] [Indexed: 10/08/2023]
Abstract
A thrombin-activity-based electrochemiluminescence (ECL) biosensor was successfully constructed using tungsten oxide quantum dots (WO3-x QDS) as the co-reactant and thrombin-cleavable peptides as the recognizer. Specifically, Ru(bpy)32+ were doped on silica nanoparticles (Ru@SiO2), which greatly enhanced the ECL potential. AuNPs@WO3-x QDs composite was then prepared to accelerate electron transfer and improve the ECL signal by 219 times. Under ideal conditions, the limit of detection for thrombin in serum was determined to be 0.28 μU/mL with a linear range from 1 μU/mL to 1 U/mL. In addition, the developed ECL biosensor was used to screen for thrombin inhibitors from 12 compounds in Artemisiae Argyi Folium. Among the compounds tested, it was observed that 100 μmol/L luteolin exhibited a significantly higher inhibition rate (exceeding 80%) compared to apigenin, isorhamnetin, naringin, or eriodictyol. In an in-vitro anticoagulation experiment, luteolin (100 μmol/L) prolonged APTT by 49%, and the molecular docking assay indicated that luteolin had binding sites of Gly219 and Asp189 in the active pockets of thrombin. This may have been the main reason underpinning luteolin's anticoagulation effects. Overall, the Ru@WO3-x QDS ECL biosensor provided a reliable strategy for thrombin activity assay and screening of anticoagulant agents.
Collapse
Affiliation(s)
- Jing Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Dan Xu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Zijie Deng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Xueping Tan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Dongnan Guo
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Yanru Qiao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - You Li
- Department of Peripheral Vascular Disease, The First Affiliated Hospital of the Medical College of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaofang Hou
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China.
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China.
| | - Junbo Zhang
- Department of Peripheral Vascular Disease, The First Affiliated Hospital of the Medical College of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
7
|
Amani MH, Rahimnejad M, Ezoji H. Smartphone-assisted quantitative colorimetric identification of thrombin based on peroxidase mimetic features of fibrinogen-gold nanozymes. Mikrochim Acta 2024; 191:83. [PMID: 38195903 DOI: 10.1007/s00604-023-06173-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/24/2023] [Indexed: 01/11/2024]
Abstract
Fibrinogen-modified gold nanoparticles (Fib-AuNPs) and 3,3',5,5'-tetramethylbenzidine (TMB) substrate besides hydrogen peroxide (H2O2) were applied for assessment of the biomarker thrombin. Fib-AuNPs have catalytic active sites for the oxidation of TMB besides H2O2 and cause the color change of the substrate. Moreover, they can lead to the enhancement in the absorption wavelengths of 650 and 370 nm. By the addition of thrombin to Fib-AuNPs, fibrinogen turns into fibrin, and AuNPs are surrounded by fibrin. Therefore, their active catalytic sites for the oxidation of TMB besides H2O2 are covered by fibrin and cannot cause color change and absorption increase as before. The relationship between the average variations of the color intensity and changes in the absorption wavelengths at 650 and 350 nm with different concentrations of bovine thrombin added to Fib-AuNPs was studied. In such manner, three sensitive colorimetric approaches have been developed for the identification of bovine thrombin with the linear range of 20-120 pM and the limit of detection (LOD) of 17.54 pM for the average color intensity (G + B), the linear range of 20-120 pM and the LOD of 13.41 pM for the absorption peak at 650 nm, and the linear range of 40-140 pM with the LOD of 18.85 pM for absorption peak at 370 nm. The practical application of this biosensing platform was indicated through the successful determination of bovine thrombin in bovine serum. The satisfactory RSD ( < 10%) and recovery values (99.11-107.61%) confirmed the feasibility of the fabricated sensor.
Collapse
Affiliation(s)
- Mohammad Hosein Amani
- Biofuel and Renewable Energy Research Center, Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol, 47148-71167, Iran
| | - Mostafa Rahimnejad
- Biofuel and Renewable Energy Research Center, Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol, 47148-71167, Iran.
| | - Hoda Ezoji
- Biofuel and Renewable Energy Research Center, Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol, 47148-71167, Iran
| |
Collapse
|
8
|
Liu J, Zhang J, Zhou C, Wang G, Su X. Multi-signal aptasensor for thrombin detection based on catalytically active gold nanoparticles and fluorescent silicon quantum dots. Mikrochim Acta 2023; 190:444. [PMID: 37851103 DOI: 10.1007/s00604-023-05990-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/05/2023] [Indexed: 10/19/2023]
Abstract
A multi-signal aptasensor for thrombin determination is proposed based on catalytically active gold nanoparticles (AuNPs) and fluorescent silicon quantum dots (SiQDs). Yellow 4-Nitrophenol (4-NP) could be converted to colorless 4-Aminophenol (4-AP) by catalytically active aptamer-modified AuNPs (S1-AuNPs). The SiQDs emitted strong blue fluorescence at 455 nm at the excitation wavelength of 367 nm. When thrombin was absent, S1-AuNPs could catalytically reduce yellow 4-NP to colorless 4-AP. When thrombin was added, the aptamer could be transformed into a G-quadruplex structure, which masked the surface-active catalytic sites of AuNPs and restrained the reduction of 4-NP. Thus, the fluorescence of SiQDs was greatly quenched by 4-NP through the inner filter effect (IFE), and the solution color remained yellow. As the concentration of thrombin increased, the catalytic activity of S1-AuNPs decreased. The concentration of 4-NP that was converted to 4-AP declined and the unconverted 4-NP increased. In this process, the absorption peak of 4-NP at 400 nm increased while the fluorescence emission of SiQDs at 455 nm decreased. The linear ranges of the fluorometric and colorimetric aptasensor were 0.5-30 nM and 0.3-30 nM, respectively. The limits of detection (LOD) for the two modes were 0.15 nM and 0.13 nM. Furthermore, a portable sensing platform was constructed by combining the smartphone-based device with the software ImageJ for the determination of thrombin. With the advantages of cost-effectiveness, simplicity of operation and broad applicability, this aptasensor provided a new perspective for on-site determination of thrombin in the clinical field.
Collapse
Affiliation(s)
- Jinying Liu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jiabao Zhang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Chenyu Zhou
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Guannan Wang
- College of Medical Engineering, Jining Medical University, Jining, 272067, China.
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
9
|
Nazim T, Lusina A, Cegłowski M. Recent Developments in the Detection of Organic Contaminants Using Molecularly Imprinted Polymers Combined with Various Analytical Techniques. Polymers (Basel) 2023; 15:3868. [PMID: 37835917 PMCID: PMC10574876 DOI: 10.3390/polym15193868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Molecularly imprinted polymers (MIPs) encompass a diverse array of polymeric matrices that exhibit the unique capacity to selectively identify a designated template molecule through specific chemical moieties. Thanks to their pivotal attributes, including exceptional selectivity, extended shelf stability, and other distinct characteristics, this class of compounds has garnered interest in the development of highly responsive sensor systems. As a result, the incorporation of MIPs in crafting distinctive sensors and analytical procedures tailored for specific analytes across various domains has increasingly become a common practice within contemporary analytical chemistry. Furthermore, the range of polymers amenable to MIP formulation significantly influences the potential utilization of both conventional and innovative analytical methodologies. This versatility expands the array of possibilities in which MIP-based sensing can be employed in recognition systems. The following review summarizes the notable progress achieved within the preceding seven-year period in employing MIP-based sensing techniques for analyte determination.
Collapse
Affiliation(s)
| | | | - Michał Cegłowski
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (T.N.); (A.L.)
| |
Collapse
|
10
|
Zhang Q, Liu Q, Liu Y, Wang H, Chen J, Shi T. PEC thrombin aptasensor based on Ag-Ag 2S decorated hematite photoanode with signal-down effect of precipitation catalyzed by G-quadruplexes/hemin. Biosens Bioelectron 2023; 232:115321. [PMID: 37075612 DOI: 10.1016/j.bios.2023.115321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/12/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
A photoelectrochemical (PEC) aptasensor for thrombin detection was rationally designed based on the photoanode of one-dimensional hematite nanorods (α-Fe2O3 NRs) with several steps of modifications. Uniform α-Fe2O3 NRs were grown vertically on the surface of fluorine-doped tin oxide (FTO) conductive glass through a one-step hydrothermal method; then Ag was grown on the surface of α-Fe2O3 NRs through a photoreduction method followed by a partial in-situ transformation into Ag2S, conferring an improvement on the initial photocurrent. Two main critical factors, namely, the steric hindrance of thrombin, benzoquinone (BQ) precipitation oxidized by H2O2 under the catalysis of G-quadruplexes/hemin, contributed to the sensitive signal-down response toward the target. Photocurrent signals related with thrombin concentration was established for thrombin analysis due to the non-conductive complex as well as their competitive consumption of electron donors and irradiation light. The excellent initial photocurrent was combined with the signal-down amplification in the design of the biosensor, conferring a limit of detection (LOD) as low as 40.2 fM and a wide linear range from 0.0001 nM to 50 nM for the detection of thrombin. The proposed biosensor was also assessed in terms of selectivity, stability, and applicability in human serum analyses, which provided an appealing maneuver for the specific analysis of thrombin in trace amount.
Collapse
Affiliation(s)
- Qiaoxia Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang, 277160, Shandong Province, China.
| | - Qingyun Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong Province, China.
| | - Yang Liu
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang, 277160, Shandong Province, China
| | - Houchen Wang
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang, 277160, Shandong Province, China
| | - Jialiang Chen
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang, 277160, Shandong Province, China
| | - Tiesheng Shi
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang, 277160, Shandong Province, China.
| |
Collapse
|
11
|
Wang S, Xu S, Zhou Q, Liu Z, Xu Z. State-of-the-art molecular imprinted colorimetric sensors and their on-site inspecting applications. J Sep Sci 2023:e2201059. [PMID: 36842066 DOI: 10.1002/jssc.202201059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Molecular imprinted colorimetric sensors can realize visual semi-quantitative analysis without the use of any equipment. With the advantages of low cost, fast response, ease of handling, and excellent recognition ability, the molecular imprinted colorimetric sensor shows great application potential in the field of sample rapid assay. Molecular imprinted colorimetric sensors can be prepared in various forms to meet the needs of different sample determination, such as film, hydrogel, strip, and adsorption coating. In this review, the preparation methods for various types of molecularly imprinted colorimetric sensors are systematically introduced. Their applications in the field of on-site biological sample detection, drug detection, disease treatment, chiral substance detection and separation, environmental analysis, and food safety detection are introduced. The limitations encountered in the practical application are presented, and the future development directions prospect.
Collapse
Affiliation(s)
- Sitao Wang
- Faculty of Science, Kunming University of Science and Technology, Kunming, P. R. China
| | - Shufang Xu
- Faculty of Science, Kunming University of Science and Technology, Kunming, P. R. China
| | - Qingqing Zhou
- Faculty of Science, Kunming University of Science and Technology, Kunming, P. R. China
| | - Zhimin Liu
- Faculty of Science, Kunming University of Science and Technology, Kunming, P. R. China
| | - Zhigang Xu
- Faculty of Science, Kunming University of Science and Technology, Kunming, P. R. China
| |
Collapse
|
12
|
Zhang B, Ma W, Guo J, Zhao Q, Zhang C, Zhu S, Xu H, Yin Y. Dual signal amplification coupling with DNA-templated silver nanoclusters for sensitive and label-free detection of thrombin. J Anal Sci Technol 2023. [DOI: 10.1186/s40543-023-00372-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
AbstractSensitive and reliable determination of thrombin is relevant in the realms of medical and biological research as it serves as an essential biomarker of a number of blood-related illnesses. Herein, we integrate allosteric probe-based specific identification of thrombin and dual signal amplification to present an unique fluorescent technique for label-free and sensitive thrombin detection. Based on DNA polymerase and endonuclease-assisted signal amplification, the method exhibits a high sensitivity with a low limit of detection of 2.3 pM, while maintaining an excellent selectivity and stability. More importantly, the approach is successfully applied in analyzing the effect of nalbuphine on coagulation function of mice. Overall, this approach possesses the advantages of high specificity and sensitivity in label-free detection of thrombin, which is promising in the diagnosis of blood-related diseases.
Collapse
|
13
|
Wu T, Li XY. An instrument-free visual quantitative detection method based on clock reaction: the detection of thrombin as an example. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 15:48-55. [PMID: 36448577 DOI: 10.1039/d2ay01786e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Instrument-free visual quantitative detection in chemical and biochemical analysis is of great significance in practical applications especially in point-of-care testing and in places where resources are limited. In this paper, we report the development of a time-based instrument-free visual quantitative detection method by employing a clock reaction, a type of chemical reaction displaying characteristic clocking behavior. The feasibility of the method was illustrated by the quantitative detection of thrombin in buffer solution using the lapse of time as the readout signal. The linear range of detection was from 1.3 to 43 nM (r2 = 0.990, n = 3) with a LOD of 0.9 nM, which is lower than the physiological concentrations of thrombin in the resting and activated blood, which range from low nanomolar to low micromolar, respectively. This method was also validated by detecting thrombin in the serum and a good recovery of nearly 100 ± 8.0% was obtained. To the best of our knowledge, this work is the first report that uses the characteristic time of a clock reaction as the readout signal in instrument-free colorimetry for quantitative bioanalysis.
Collapse
Affiliation(s)
- Tianxiang Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, ClearWater Bay, Kowloon, Hong Kong S.A.R., People's Republic of China.
| | - Xiao-Yuan Li
- Department of Chemistry, The Hong Kong University of Science and Technology, ClearWater Bay, Kowloon, Hong Kong S.A.R., People's Republic of China.
| |
Collapse
|
14
|
Aptamer-functionalized pH-responsive polymer-modified magnetic nanoparticles for specific enrichment and sensitive determination of lactoferrin. Mikrochim Acta 2022; 190:26. [PMID: 36517702 DOI: 10.1007/s00604-022-05589-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022]
Abstract
A new type of aptamer-functionalized pH-responsive polymer-modified magnetic nanoparticles (ApMNPs) is introduced for specific enrichment and sensitive determination of lactoferrin (Lf) in complex matrixes. In the construction, Fe3O4@3-(Triethoxysilyl)propylmethacrylate@poly(4-Vinyl-1, 3-dioxolan-2-one-acrylic acid) (Fe3O4@MPS@p(VEC-AA)) were synthesized as pH-responsive polymer-modified magnetic nanoparticles (pMNPs) through free radical polymerization to increase the tunable interaction. Lf-binding aptamers were conjugated onto pMNPs through the reaction of amino-group in aptamer and epoxide-group in VEC, innovatively applied to prepare Lf-ApMNPs. On the basis of the synergistic effect of specific affinity of aptamer on Lf and tunable hydrophobic/hydrophilic property of pH-responsive polymer, Lf-ApMNPs presented good selectivity toward Lf, excellent adsorption capacity (as high as 233.9 mg g-1), as well as good recoveries in the range 93.6-99.6% in Lf-related nutrition samples. Significantly, the introduction of pH-responsive monomer (AA) effectively regulated the adsorption-desorption process of Lf, with the function similar to a switch. Moreover, the good performances of Ct-ApMNPs toward α-Chymotrypsin showed that ApMNPs exhibited universality to other proteins through easily changing the binding aptamer, thereby offering a facile and efficient approach for specific enrichment and sensitive determination of targets in real biological samples.
Collapse
|
15
|
Zhang W, Zhang Y, Wang R, Zhang P, Zhang Y, Randell E, Zhang M, Jia Q. A review: Development and application of surface molecularly imprinted polymers toward amino acids, peptides, and proteins. Anal Chim Acta 2022; 1234:340319. [DOI: 10.1016/j.aca.2022.340319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/09/2022] [Accepted: 08/23/2022] [Indexed: 11/01/2022]
|
16
|
Pulsed laser irradiation induces the generation of alloy cluster ions for the screening of protease activity. Biosens Bioelectron 2022; 216:114615. [PMID: 35973275 DOI: 10.1016/j.bios.2022.114615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/13/2022] [Accepted: 07/31/2022] [Indexed: 11/23/2022]
Abstract
Pulsed laser irradiation can cause the fragmentation of nanoparticles, which generates cluster ions. This allows nanoparticles to be adopted as mass tag/signal amplifiers in laser desorption/ionization mass spectrometry (LDI-MS) bioassays. Herein, we demonstrate the potential of using the signal from alloy cluster ions in bioassays through a fibrin clot model to determine the activity of thrombin. A mixed solution of silver and gold nanoparticles functionalized with fibrinogen (Fg‒Ag NPs/Fg‒Au NPs) treated with thrombin can form clots composed of aggregated fibrin-Au NPs/Ag NPs. These clots analyzed with LDI-MS are noted to form intense Ag-Au alloy cluster ions, especially [Ag2Au]+, which were used to detect thrombin concentration with a dynamic range of 2.5-50 pM in human plasma. This sensing platform was further employed for the screening of direct thrombin inhibitors. This work developed a novel bioassay utilizing metallic gas-phase reactions generated from pulsed laser irradiation of aggregated nanoparticles to monitor enzymatic activity and to screen inhibitors. We believe that LDS-MS can serve as a new platform for gas-phase reaction-based bioassays.
Collapse
|
17
|
Zhou Q, Xu Z, Liu Z. Molecularly Imprinting–Aptamer Techniques and Their Applications in Molecular Recognition. BIOSENSORS 2022; 12:bios12080576. [PMID: 36004972 PMCID: PMC9406215 DOI: 10.3390/bios12080576] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022]
Abstract
Molecular imprinting–aptamer techniques exhibit the advantages of molecular imprinting and aptamer technology. Hybrids of molecularly imprinted polymer–aptamer (MIP–aptamer) prepared by this technique have higher stability, binding affinity and superior selectivity than conventional molecularly imprinted polymers or aptamers. In recent years, molecular imprinting–aptamer technologies have attracted considerable interest for the selective recognition of target molecules in complex sample matrices and have been used in molecular recognition such as antibiotics, proteins, viruses and pesticides. This review introduced the development of molecular imprinting–aptamer-combining technologies and summarized the mechanism of MIP–aptamer formation. Meanwhile, we discussed the challenges in preparing MIP–aptamer. Finally, we summarized the application of MIP–aptamer to the molecular recognition in disease diagnosis, environmental analysis, food safety and other fields.
Collapse
|
18
|
Picomolar thrombin detection by orchestration of triple signal amplification strategy with hierarchically porous Ti3C2Tx MXene electrode material-catalytic hairpin assembly reaction-metallic nanoprobes. Biosens Bioelectron 2022; 208:114228. [DOI: 10.1016/j.bios.2022.114228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 01/20/2023]
|
19
|
A paper-based lateral flow sensor for the detection of thrombin and its inhibitors. Anal Chim Acta 2022; 1205:339756. [DOI: 10.1016/j.aca.2022.339756] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 12/19/2022]
|
20
|
Flower-like titanium dioxide as novel co-reaction accelerator for ultrasensitive “off–on” electrochemiluminescence aptasensor construction based on 2D g-C3N4 layer for thrombin detection. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05136-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Turan E, Zengin A, Suludere Z, Kalkan NÖ, Tamer U. Construction of a sensitive and selective plasmonic biosensor for prostate specific antigen by combining magnetic molecularly-imprinted polymer and surface-enhanced Raman spectroscopy. Talanta 2022; 237:122926. [PMID: 34736663 DOI: 10.1016/j.talanta.2021.122926] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/20/2021] [Accepted: 10/02/2021] [Indexed: 11/18/2022]
Abstract
Selective and sensitive detection of cancer biomarkers in serum samples is critical for early diagnosis of cancer. Prostate specific antigen is an important biomarker of prostate cancer, which ranks high among cancer-related deaths of men over 50 years old. Herein, a novel analytical method was introduced for detection of PSA by combining high selectivity of molecularly-imprinted polymers and high sensitivity of surface-enhanced Raman spectroscopy (SERS). Firstly, magnetic nanoparticles were grafted with an imprinted layer by using tannic acid as a functional monomer, diethylenetriamine as a cross-linker and prostate specific antigen as a template molecule. Detailed surface characterization and re-binding experiment results indicated that the imprinting of the antigen was successful with an imprinting factor of 5.58. The prepared magnetic molecularly imprinted polymers (MMIPs) were used as an antibody-free capture probe and labeled with gold nanoparticles that were modified with anti-PSA and a Raman reporter, namely 5,5'-dithiobis-(2-nitrobenzoic acid). Thus, a plasmonic structure (sandwich complex) was formed between MMIP and the SERS label. The limit of detection and limit of quantification of the designed sensor were 0.9 pg/mL and 3.2 pg/mL, respectively. The sensor also showed high recovery rates (98.0-100.1% for healthy person and 99.0-101.3% for patient) with low standard deviations (less than 4.3% for healthy person and less than 3.3% for patient) for PSA in serum samples. Compared with the traditional immunoassays, the proposed method has several advantages like low cost, reduced detection procedure, fast response, high sensitivity and selectivity. It is believed that the proposed method can be potentially used for selective and sensitive determination of tumor marker of prostate cancer in clinical applications.
Collapse
Affiliation(s)
- Eylem Turan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara Medipol University, 06050, Ankara, Turkey
| | - Adem Zengin
- Department of Chemistry, Faculty of Science, Van Yuzuncu Yil University, 65080, Van, Turkey.
| | - Zekiye Suludere
- Department of Biology, Faculty of Science, Gazi University, 06500, Ankara, Turkey
| | - Nurhan Önal Kalkan
- Department of Medical Oncology, Faculty of Medicine, Van Yuzuncu Yil University, 65080, Van, Turkey
| | - Uğur Tamer
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, 06500, Ankara, Turkey
| |
Collapse
|
22
|
(INVITED)Quantitative detection of SARS-CoV-2 virions in aqueous mediums by IoT optical fiber sensors. RESULTS IN OPTICS 2021; 5. [PMCID: PMC8526116 DOI: 10.1016/j.rio.2021.100177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The COVID-19 pandemic has emphasized the need for portable, small-size, low-cost, simple to use, and highly sensitive sensors able to measure a specific substance, with the capability of the transmission over the Internet of statistical data, such as in this specific case on the spread of the SARS-CoV-2 virions. Moreover, to resolve the COVID-19 emergency, the possibility of making selective SARS-CoV-2 measurements in different aqueous matrices could be advantageous. Thus, the realization of rapid and innovative point-of-care diagnostics tests has become a global priority. In response to the current need for quick, highly sensitive and on-site detection of the SARS-CoV-2 virions in different aqueous solutions, two different nanolayer biorecognition systems separately combined with an adaptable optical fiber sensor have been reported in this work. More specifically, two SARS-CoV-2 sensors have been developed and tested by exploiting a plasmonic plastic optical fiber (POF) sensor coupled with two different receptors, both designed for the specific recognition of the SARS-CoV-2 Spike protein; one is aptamer-based and the other one Molecular Imprinted Polymer-based. The preliminary tests on SARS-CoV-2 virions, performed on samples of nasopharyngeal (NP) swabs in universal transport medium (UTM), were compared with data obtained using reverse-transcription polymerase chain reaction (RT-PCR). According to these preliminary experimental results obtained exploiting both receptors, the sensitivity of the proposed SARS-CoV-2 optical fiber sensors proved to be high enough to detect virions. Furthermore, a relatively fast response time (a few minutes) to detect virions was obtained without additional reagents, with the capability to transmit the data via the Internet automatically.
Collapse
|