1
|
Wolf KMP, Maffeis V, Schoenenberger CA, Zünd T, Bar-Peled L, Palivan CG, Vogel V. Tweaking the NRF2 signaling cascade in human myelogenous leukemia cells by artificial nano-organelles. Proc Natl Acad Sci U S A 2024; 121:e2219470121. [PMID: 38776365 PMCID: PMC11145192 DOI: 10.1073/pnas.2219470121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/09/2024] [Indexed: 05/25/2024] Open
Abstract
NRF2 (nuclear factor erythroid-2-related factor 2) is a key regulator of genes involved in the cell's protective response to oxidative stress. Upon activation by disturbed redox homeostasis, NRF2 promotes the expression of metabolic enzymes to eliminate reactive oxygen species (ROS). Cell internalization of peroxisome-like artificial organelles that harbor redox-regulating enzymes was previously shown to reduce ROS-induced stress and thus cell death. However, if and to which extent ROS degradation by such nanocompartments interferes with redox signaling pathways is largely unknown. Here, we advance the design of H2O2-degrading artificial nano-organelles (AnOs) that exposed surface-attached cell penetrating peptides (CPP) for enhanced uptake and were equipped with a fluorescent moiety for rapid visualization within cells. To investigate how such AnOs integrate in cellular redox signaling, we engineered leukemic K562 cells that report on NRF2 activation by increased mCherry expression. Once internalized, ROS-metabolizing AnOs dampen intracellular NRF2 signaling upon oxidative injury by degrading H2O2. Moreover, intracellular AnOs conferred protection against ROSinduced cell death in conditions when endogenous ROS-protection mechanisms have been compromised by depletion of glutathione or knockdown of NRF2. We demonstrate CPP-facilitated AnO uptake and AnO-mediated protection against ROS insults also in the T lymphocyte population of primary peripheral blood mononuclear cells from healthy donors. Overall, our data suggest that intracellular AnOs alleviated cellular stress by the on-site reduction of ROS.
Collapse
Affiliation(s)
- Konstantin M. P. Wolf
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, 8006Zurich, Switzerland
- Swiss National Centre of Competence in Research, Molecular Systems Engineering, 4002Basel, Switzerland
| | - Viviana Maffeis
- Swiss National Centre of Competence in Research, Molecular Systems Engineering, 4002Basel, Switzerland
- Department of Chemistry, University of Basel, 4002Basel, Switzerland
| | - Cora-Ann Schoenenberger
- Swiss National Centre of Competence in Research, Molecular Systems Engineering, 4002Basel, Switzerland
- Department of Chemistry, University of Basel, 4002Basel, Switzerland
| | - Tamara Zünd
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, 8006Zurich, Switzerland
| | - Liron Bar-Peled
- Center for Cancer Research, Massachusetts General Hospital/Department of Medicine, Harvard Medical School, Boston, MA02129, USA
| | - Cornelia G. Palivan
- Swiss National Centre of Competence in Research, Molecular Systems Engineering, 4002Basel, Switzerland
- Department of Chemistry, University of Basel, 4002Basel, Switzerland
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, 8006Zurich, Switzerland
- Swiss National Centre of Competence in Research, Molecular Systems Engineering, 4002Basel, Switzerland
| |
Collapse
|
2
|
Maffeis V, Skowicki M, Wolf KMP, Chami M, Schoenenberger CA, Vogel V, Palivan CG. Advancing the Design of Artificial Nano-organelles for Targeted Cellular Detoxification of Reactive Oxygen Species. NANO LETTERS 2024; 24:2698-2704. [PMID: 38408754 PMCID: PMC10921454 DOI: 10.1021/acs.nanolett.3c03888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/28/2024]
Abstract
Artificial organelles (AnOs) are in the spotlight as systems to supplement biochemical pathways in cells. While polymersome-based artificial organelles containing enzymes to reduce reactive oxygen species (ROS) are known, applications requiring control of their enzymatic activity and cell-targeting to promote intracellular ROS detoxification are underexplored. Here, we introduce advanced AnOs where the chemical composition of the membrane supports the insertion of pore-forming melittin, enabling molecular exchange between the AnO cavity and the environment, while the encapsulated lactoperoxidase (LPO) maintains its catalytic function. We show that H2O2 outside AnOs penetrates through the melittin pores and is rapidly degraded by the encapsulated enzyme. As surface attachment of cell-penetrating peptides facilitates AnOs uptake by cells, electron spin resonance revealed a remarkable enhancement in intracellular ROS detoxification by these cell-targeted AnOs compared to nontargeted AnOs, thereby opening new avenues for a significant reduction of oxidative stress in cells.
Collapse
Affiliation(s)
- Viviana Maffeis
- Department
of Chemistry, University of Basel, Mattenstrasse 22, 4002 Basel, Switzerland
- NCCR-Molecular
Systems Engineering, 4002 Basel, Switzerland
| | - Michal Skowicki
- Department
of Chemistry, University of Basel, Mattenstrasse 22, 4002 Basel, Switzerland
- NCCR-Molecular
Systems Engineering, 4002 Basel, Switzerland
| | - Konstantin M. P. Wolf
- NCCR-Molecular
Systems Engineering, 4002 Basel, Switzerland
- Laboratory
of Applied Mechanobiology, Institute of Translational Medicine, Department
of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Mohamed Chami
- BioEM
lab, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | - Viola Vogel
- NCCR-Molecular
Systems Engineering, 4002 Basel, Switzerland
- Laboratory
of Applied Mechanobiology, Institute of Translational Medicine, Department
of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Cornelia G. Palivan
- Department
of Chemistry, University of Basel, Mattenstrasse 22, 4002 Basel, Switzerland
- NCCR-Molecular
Systems Engineering, 4002 Basel, Switzerland
| |
Collapse
|
3
|
Heuberger L, Messmer D, dos Santos EC, Scherrer D, Lörtscher E, Schoenenberger C, Palivan CG. Microfluidic Giant Polymer Vesicles Equipped with Biopores for High-Throughput Screening of Bacteria. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307103. [PMID: 38158637 PMCID: PMC10953582 DOI: 10.1002/advs.202307103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Indexed: 01/03/2024]
Abstract
Understanding the mechanisms of antibiotic resistance is critical for the development of new therapeutics. Traditional methods for testing bacteria are often limited in their efficiency and reusability. Single bacterial cells can be studied at high throughput using double emulsions, although the lack of control over the oil shell permeability and limited access to the droplet interior present serious drawbacks. Here, a straightforward strategy for studying bacteria-encapsulating double emulsion-templated giant unilamellar vesicles (GUVs) is introduced. This microfluidic approach serves to simultaneously load bacteria inside synthetic GUVs and to permeabilize their membrane with the pore-forming peptide melittin. This enables antibiotic delivery or the influx of fresh medium into the GUV lumen for highly parallel cultivation and antimicrobial efficacy testing. Polymer-based GUVs proved to be efficient culture and analysis microvessels, as microfluidics allow easy selection and encapsulation of bacteria and rapid modification of culture conditions for antibiotic development. Further, a method for in situ profiling of biofilms within GUVs for high-throughput screening is demonstrated. Conceivably, synthetic GUVs equipped with biopores can serve as a foundation for the high-throughput screening of bacterial colony interactions during biofilm formation and for investigating the effect of antibiotics on biofilms.
Collapse
Affiliation(s)
- Lukas Heuberger
- Department of ChemistryUniversity of BaselMattenstrasse 22Basel4002Switzerland
| | - Daniel Messmer
- Department of ChemistryUniversity of BaselMattenstrasse 22Basel4002Switzerland
| | - Elena C. dos Santos
- Department of ChemistryUniversity of BaselMattenstrasse 22Basel4002Switzerland
| | - Dominik Scherrer
- IBM Research Europe–ZürichSäumerstrasse 4Rüschlikon8803Switzerland
| | - Emanuel Lörtscher
- IBM Research Europe–ZürichSäumerstrasse 4Rüschlikon8803Switzerland
- NCCR‐Molecular Systems EngineeringMattenstrasse 24a, BPR 1095Basel4058Switzerland
| | | | - Cornelia G. Palivan
- Department of ChemistryUniversity of BaselMattenstrasse 22Basel4002Switzerland
- NCCR‐Molecular Systems EngineeringMattenstrasse 24a, BPR 1095Basel4058Switzerland
- Swiss Nanoscience Institute (SNI)University of BaselKlingelbergstrasse 82Basel4056Switzerland
| |
Collapse
|
4
|
Maffeis V, Heuberger L, Nikoletić A, Schoenenberger C, Palivan CG. Synthetic Cells Revisited: Artificial Cells Construction Using Polymeric Building Blocks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305837. [PMID: 37984885 PMCID: PMC10885666 DOI: 10.1002/advs.202305837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/06/2023] [Indexed: 11/22/2023]
Abstract
The exponential growth of research on artificial cells and organelles underscores their potential as tools to advance the understanding of fundamental biological processes. The bottom-up construction from a variety of building blocks at the micro- and nanoscale, in combination with biomolecules is key to developing artificial cells. In this review, artificial cells are focused upon based on compartments where polymers are the main constituent of the assembly. Polymers are of particular interest due to their incredible chemical variety and the advantage of tuning the properties and functionality of their assemblies. First, the architectures of micro- and nanoscale polymer assemblies are introduced and then their usage as building blocks is elaborated upon. Different membrane-bound and membrane-less compartments and supramolecular structures and how they combine into advanced synthetic cells are presented. Then, the functional aspects are explored, addressing how artificial organelles in giant compartments mimic cellular processes. Finally, how artificial cells communicate with their surrounding and each other such as to adapt to an ever-changing environment and achieve collective behavior as a steppingstone toward artificial tissues, is taken a look at. Engineering artificial cells with highly controllable and programmable features open new avenues for the development of sophisticated multifunctional systems.
Collapse
Affiliation(s)
- Viviana Maffeis
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- NCCR‐Molecular Systems EngineeringBPR 1095, Mattenstrasse 24aBaselCH‐4058Switzerland
| | - Lukas Heuberger
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
| | - Anamarija Nikoletić
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- Swiss Nanoscience InstituteUniversity of BaselKlingelbergstrasse 82BaselCH‐4056Switzerland
| | | | - Cornelia G. Palivan
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- NCCR‐Molecular Systems EngineeringBPR 1095, Mattenstrasse 24aBaselCH‐4058Switzerland
- Swiss Nanoscience InstituteUniversity of BaselKlingelbergstrasse 82BaselCH‐4056Switzerland
| |
Collapse
|
5
|
Akshay SD, Deekshit VK, Mohan Raj J, Maiti B. Outer Membrane Proteins and Efflux Pumps Mediated Multi-Drug Resistance in Salmonella: Rising Threat to Antimicrobial Therapy. ACS Infect Dis 2023; 9:2072-2092. [PMID: 37910638 DOI: 10.1021/acsinfecdis.3c00408] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Despite colossal achievements in antibiotic therapy in recent decades, drug-resistant pathogens have remained a leading cause of death and economic loss globally. One such WHO-critical group pathogen is Salmonella. The extensive and inappropriate treatments for Salmonella infections have led from multi-drug resistance (MDR) to extensive drug resistance (XDR). The synergy between efflux-mediated systems and outer membrane proteins (OMPs) may favor MDR in Salmonella. Differential expression of the efflux system and OMPs (influx) and positional mutations are the factors that can be correlated to the development of drug resistance. Insights into the mechanism of influx and efflux of antibiotics can aid in developing a structurally stable molecule that can be proficient at escaping from the resistance loops in Salmonella. Understanding the strategic responsibilities and developing policies to address the surge of drug resistance at the national, regional, and global levels are the needs of the hour. In this Review, we attempt to aggregate all the available research findings and delineate the resistance mechanisms by dissecting the involvement of OMPs and efflux systems. Integrating major OMPs and the efflux system's differential expression and positional mutation in Salmonella may provide insight into developing strategic therapies for one health application.
Collapse
Affiliation(s)
- Sadanand Dangari Akshay
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangalore-575018, India
| | - Vijaya Kumar Deekshit
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Infectious Diseases & Microbial Genomics, Paneer Campus, Deralakatte, Mangalore-575018, India
| | - Juliet Mohan Raj
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Infectious Diseases & Microbial Genomics, Paneer Campus, Deralakatte, Mangalore-575018, India
| | - Biswajit Maiti
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangalore-575018, India
| |
Collapse
|
6
|
Guinart A, Korpidou M, Doellerer D, Pacella G, Stuart MCA, Dinu IA, Portale G, Palivan C, Feringa BL. Synthetic molecular motor activates drug delivery from polymersomes. Proc Natl Acad Sci U S A 2023; 120:e2301279120. [PMID: 37364098 PMCID: PMC10319042 DOI: 10.1073/pnas.2301279120] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/27/2023] [Indexed: 06/28/2023] Open
Abstract
The design of stimuli-responsive systems in nanomedicine arises from the challenges associated with the unsolved needs of current molecular drug delivery. Here, we present a delivery system with high spatiotemporal control and tunable release profiles. The design is based on the combination of an hydrophobic synthetic molecular rotary motor and a PDMS-b-PMOXA diblock copolymer to create a responsive self-assembled system. The successful incorporation and selective activation by low-power visible light (λ = 430 nm, 6.9 mW) allowed to trigger the delivery of a fluorescent dye with high efficiencies (up to 75%). Moreover, we proved the ability to turn on and off the responsive behavior on demand over sequential cycles. Low concentrations of photoresponsive units (down to 1 mol% of molecular motor) are shown to effectively promote release. Our system was also tested under relevant physiological conditions using a lung cancer cell line and the encapsulation of an Food and Drug Administration (FDA)-approved drug. Similar levels of cell viability are observed compared to the free given drug showing the potential of our platform to deliver functional drugs on request with high efficiency. This work provides an important step for the application of synthetic molecular machines in the next generation of smart delivery systems.
Collapse
Affiliation(s)
- Ainoa Guinart
- Faculty of Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, 9747 AGGroningen, The Netherlands
| | - Maria Korpidou
- Department of Chemistry, University of Basel, BPR 1096, 4058Basel, Switzerland
| | - Daniel Doellerer
- Faculty of Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, 9747 AGGroningen, The Netherlands
| | - Gianni Pacella
- Faculty of Science and Engineering, Zernike Institute for Advanced Materials, University of Groningen, 9747 AGGroningen, The Netherlands
| | - Marc C. A. Stuart
- Faculty of Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, 9747 AGGroningen, The Netherlands
| | - Ionel Adrian Dinu
- Department of Chemistry, University of Basel, BPR 1096, 4058Basel, Switzerland
- National Centre of Competence in Research-Molecular Systems Engineering, BioPark Rosental 1095Basel, Switzerland
| | - Giuseppe Portale
- Faculty of Science and Engineering, Zernike Institute for Advanced Materials, University of Groningen, 9747 AGGroningen, The Netherlands
| | - Cornelia Palivan
- Department of Chemistry, University of Basel, BPR 1096, 4058Basel, Switzerland
- National Centre of Competence in Research-Molecular Systems Engineering, BioPark Rosental 1095Basel, Switzerland
- Swiss Nanoscience Institute, University of Basel, 4056Basel, Switzerland
| | - Ben L. Feringa
- Faculty of Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, 9747 AGGroningen, The Netherlands
- Faculty of Science and Engineering, Zernike Institute for Advanced Materials, University of Groningen, 9747 AGGroningen, The Netherlands
| |
Collapse
|
7
|
Maffeis V, Hürlimann D, Krywko-Cendrowska A, Schoenenberger CA, Housecroft CE, Palivan CG. A DNA-Micropatterned Surface for Propagating Biomolecular Signals by Positional on-off Assembly of Catalytic Nanocompartments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2202818. [PMID: 35869606 DOI: 10.1002/smll.202202818] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Signal transduction is pivotal for the transfer of information between and within living cells. The composition and spatial organization of specified compartments are key to propagating soluble signals. Here, a high-throughput platform mimicking multistep signal transduction which is based on a geometrically defined array of immobilized catalytic nanocompartments (CNCs) that consist of distinct polymeric nanoassemblies encapsulating enzymes and DNA or enzymes alone is presented. The dual role of single entities or tandem CNCs in providing confined but communicating spaces for complex metabolic reactions and in protecting encapsulated compounds from denaturation is explored. To support a controlled spatial organization of CNCs, CNCs are patterned by means of DNA hybridization to a microprinted glass surface. Specifically, CNC-functionalized DNA microarrays are produced where individual reaction compartments are kept in close proximity by a distinct geometrical arrangement to promote effective communication. Besides a remarkable versatility and robustness, the most prominent feature of this platform is the reversibility of DNA-mediated CNC-anchoring which renders it reusable. Micropatterns of polymer-based nanocompartment assemblies offer an ideal scaffold for the development of the next generation responsive and communicative soft-matter analytical devices for applications in catalysis and medicine.
Collapse
Affiliation(s)
- Viviana Maffeis
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
- NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Dimitri Hürlimann
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
- NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Agata Krywko-Cendrowska
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
| | - Cora-Ann Schoenenberger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
- NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Catherine E Housecroft
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
- NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
- NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| |
Collapse
|
8
|
Muthwill MS, Kong P, Dinu IA, Necula D, John C, Palivan CG. Tailoring Polymer-Based Nanoassemblies for Stimuli-Responsive Theranostic Applications. Macromol Biosci 2022; 22:e2200270. [PMID: 36100461 DOI: 10.1002/mabi.202200270] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/28/2022] [Indexed: 12/25/2022]
Abstract
Polymer assemblies on the nanoscale represent a powerful toolbox for the design of theranostic systems when combined with both therapeutic compounds and diagnostic reporting ones. Here, recent advances in the design of theranostic systems for various diseases, containing-in their architecture-either polymers or polymer assemblies as one of the building blocks are presented. This review encompasses the general principles of polymer self-assembly, from the production of adequate copolymers up to supramolecular assemblies with theranostic functionality. Such polymer nanoassemblies can be further tailored through the incorporation of inorganic nanoparticles to endow them with multifunctional therapeutic and/or diagnostic features. Systems that change their architecture or properties in the presence of stimuli are selected, as responsivity to changes in the environment is a key factor for enhancing efficiency. Such theranostic systems are based on the intrinsic properties of copolymers or one of the other components. In addition, systems with a more complex architecture, such as multicompartments, are presented. Selected systems indicate the advantages of such theranostic approaches and provide a basis for further developments in the field.
Collapse
Affiliation(s)
- Moritz S Muthwill
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland.,NCCR-Molecular Systems Engineering, Mattenstrasse 24a, BPR 1095, Basel, 4058, Switzerland
| | - Phally Kong
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
| | - Ionel Adrian Dinu
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
| | - Danut Necula
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
| | - Christoph John
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland.,NCCR-Molecular Systems Engineering, Mattenstrasse 24a, BPR 1095, Basel, 4058, Switzerland
| |
Collapse
|