1
|
He M, Zhang L, Ruan K, Zhang J, Zhang H, Lv P, Guo Y, Shi X, Guo H, Kong J, Gu J. Functionalized Aluminum Nitride for Improving Hydrolysis Resistances of Highly Thermally Conductive Polysiloxane Composites. NANO-MICRO LETTERS 2025; 17:134. [PMID: 39910001 DOI: 10.1007/s40820-025-01669-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/11/2025] [Indexed: 02/07/2025]
Abstract
A series of divinylphenyl-acryloyl chloride copolymers (PDVB-co-PACl) is synthesized via atom transfer radical polymerization employing tert-butyl acrylate and divinylbenzene as monomers. PDVB-co-PACl is utilized to graft on the surface of spherical aluminum nitride (AlN) to prepare functionalized AlN (AlN@PDVB-co-PACl). Polymethylhydrosiloxane (PMHS) is then used as the matrix to prepare thermally conductive AlN@PDVB-co-PACl/PMHS composites with AlN@PDVB-co-PACl as fillers through blending and curing. The grafting of PDVB-co-PACl synchronously enhances the hydrolysis resistance of AlN and its interfacial compatibility with PMHS matrix. When the molecular weight of PDVB-co-PACl is 5100 g mol-1 and the grafting density is 0.8 wt%, the composites containing 75 wt% of AlN@PDVB-co-PACl exhibit the optimal comprehensive performance. The thermal conductivity (λ) of the composite is 1.14 W m-1 K-1, which enhances by 20% and 420% compared to the λ of simply physically blended AlN/PMHS composite and pure PMHS, respectively. Meanwhile, AlN@PDVB-co-PACl/PMHS composites display remarkable hydrothermal aging resistance by retaining 99.1% of its λ after soaking in 90 °C deionized water for 80 h, whereas the λ of the blended AlN/PMHS composites decreases sharply to 93.7%.
Collapse
Affiliation(s)
- Mukun He
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Lei Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Kunpeng Ruan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Junliang Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Haitian Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Peng Lv
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Yongqiang Guo
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Xuetao Shi
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Hua Guo
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| | - Jie Kong
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing, 401135, People's Republic of China.
| |
Collapse
|
2
|
Dey UK, Demirci S, Ortega R, Rawah T, Chaudary A, Liu F, Yang Z, Huang B, Jiang S. Beyond Surfactants: Janus Particles for Functional Interfaces and Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 39883033 DOI: 10.1021/acs.langmuir.4c04612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Janus particles (JPs), initially introduced as soft matter, have evolved into a distinctive class of materials that set them apart from traditional surfactants, dispersants, and block copolymers. This mini-review examines the similarities and differences between JPs and their molecular counterparts to elucidate the unique properties of JPs. Key studies on the assembly behavior of JPs in bulk phases and at interfaces are reviewed, highlighting their unique ability to form diverse, complex structures. The superior interfacial stability and tunable amphiphilicity of JPs make them highly effective emulsifiers and dispersants, particularly in emulsion polymerization systems. Beyond these applications, JPs demonstrate immense potential as coating materials, facilitating the development of eco-friendly, anti-icing, and antifouling coatings. A comparative discussion with zwitterionic polymers also highlights the distinctive advantages of each system. This review emphasizes that while JPs mimic some of the behaviors of small molecular surfactants, they also open doors to entirely new applications, making them indispensable as next-generation functional materials.
Collapse
Affiliation(s)
- Utsav Kumar Dey
- Department of Materials Science & Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Serkan Demirci
- Department of Materials Science & Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Ricardo Ortega
- Department of Materials Science & Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Thamer Rawah
- Department of Materials Science & Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Aneeba Chaudary
- Department of Materials Science & Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Fei Liu
- Department of Materials Science & Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Zhengtao Yang
- Department of Materials Science & Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Bingrui Huang
- Department of Materials Science & Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Shan Jiang
- Department of Materials Science & Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
3
|
Amrenova Y, Zhengis A, Yergesheva A, Abutalip M, Nuraje N. Preparation of Zwitterionic Sulfobetaines and Study of Their Thermal Properties and Nanostructured Self-Assembling Features. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:58. [PMID: 39791816 PMCID: PMC11722607 DOI: 10.3390/nano15010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025]
Abstract
Zwitterionic polymers have garnered significant attention for their distinctive properties, such as biocompatibility, antifouling capabilities, and resistance to protein adsorption, making them promising candidates for a wide range of applications, including drug delivery, oil production inhibitors, and water purification membranes. This study reports the synthesis and characterization of zwitterionic monomers and polymers through the modification of linear, vinyl, and aromatic heterocyclic functional groups via reaction with 1,3-propanesultone. Four zwitterionic polymers with varying molecular structures-ranging from linear to five and six membered ring systems-were synthesized: poly(sulfobetaine methacrylamide) (pSBMAm), poly(sulfobetaine-1-vinylimidazole) (pSB1VI), poly(sulfobetaine-2-vinylpyridine) (pSB2VP), and poly(sulfobetaine-4-vinylpyridine) (pSB4VP). Their molecular weights, thermal behavior, and self-assembly properties were analyzed using gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and zeta potential measurements. The glass transition temperatures (Tg) ranged from 276.52 °C for pSBMAm to 313.69 °C for pSB4VP, while decomposition temperatures exhibited a similar trend, with pSBMAm degrading at 301.03 °C and pSB4VP at 387.14 °C. The polymers' self-assembly behavior was strongly dependent on pH and their surface charge, particularly under varying pH conditions: spherical micelles were observed at neutral pH, while fractal aggregates formed at basic pH. These results demonstrate that precise modifications of the chemical structure, specifically in the linear, imidazole, and pyridine moieties, enable fine control over the thermal properties and self-assembly behavior of polyzwitterions. Such insights are essential for tailoring polymer properties for targeted applications in filtration membranes, drug delivery systems, and solid polymer electrolytes, where thermal stability and self-assembly play crucial roles.
Collapse
Affiliation(s)
- Yenglik Amrenova
- Renewable Energy Laboratory, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.A.); (A.Z.); (A.Y.)
- Department of Chemical and Biochemical Engineering, Satbayev University, Almaty 050013, Kazakhstan
| | - Arshyn Zhengis
- Renewable Energy Laboratory, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.A.); (A.Z.); (A.Y.)
- School of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Arailym Yergesheva
- Renewable Energy Laboratory, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.A.); (A.Z.); (A.Y.)
| | - Munziya Abutalip
- Renewable Energy Laboratory, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.A.); (A.Z.); (A.Y.)
- Department of Chemical and Biochemical Engineering, Satbayev University, Almaty 050013, Kazakhstan
- School of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Nurxat Nuraje
- Renewable Energy Laboratory, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.A.); (A.Z.); (A.Y.)
| |
Collapse
|
4
|
Wi Y, Kang DG, Ko H, Oh M, Jang J, Rim M, Lee KM, Godman NP, McConney ME, Jeong KU. Zwitterion Interlocked Diarylethene Molecules Order, Unconnected Diarylethene Molecules Disorder. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2410466. [PMID: 39690865 DOI: 10.1002/smll.202410466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Indexed: 12/19/2024]
Abstract
A diarylethene-based zwitterionic molecule (DZM) is newly synthesized for the development of smart films exhibiting reversible color change and switchable ionic conductivity in response to external light stimuli. This dual molecular building block is constructed through zwitterionic interlocking and strong phase separation between the dendron-shaped aliphatic tails and the diarylethene head. Uniaxial shear coating and molecular self-assembly result in anisotropically oriented nanostructures, which are further solidified through photopolymerization. In the absence of zwitterionic interlocking, DZM fails to form ordered structures and remains disordered. The anisotropically oriented nanostructures of DZM exhibit polarization-dependent photochromic properties despite the inherent low anisotropy of a single diarylethene chromophore. Structural analysis reveals that the zwitterion-interlocked molecular building block self-assemble into nanocolumns that align uniaxially during the shear coating process. Alternating ultraviolet and visible light reversibly switches the ionic conductivity of the DZM thin film and a change in color is observed due to the photoisomerization of the diarylethene chromophore. Utilizing the polarization-dependent photochromic properties, light-sensitive smart thin films are demonstrated with potential applications in anti-counterfeiting labels and sensors.
Collapse
Affiliation(s)
- Youngjae Wi
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Dong-Gue Kang
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hyeyoon Ko
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Mintaek Oh
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Junhwa Jang
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Minwoo Rim
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Kyung Min Lee
- US Air Force Research Laboratory, Wright-Patterson Air Force Base Dayton, Dayton, OH, 45433, USA
| | - Nicholas P Godman
- US Air Force Research Laboratory, Wright-Patterson Air Force Base Dayton, Dayton, OH, 45433, USA
| | - Michael E McConney
- US Air Force Research Laboratory, Wright-Patterson Air Force Base Dayton, Dayton, OH, 45433, USA
| | - Kwang-Un Jeong
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| |
Collapse
|
5
|
Wei L, Yang Y, Qiu X, Shen J, Zhao Y, Zhang X, Hu B, Yang T, Fu H, Chen S, Huang J. Self-Polymerized Tough and High-Entanglement Zwitterionic Functional Hydrogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405789. [PMID: 39319480 DOI: 10.1002/smll.202405789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/15/2024] [Indexed: 09/26/2024]
Abstract
Zwitterionic hydrogels exhibit great potential in biomedical applications due to their antifouling properties and biocompatibility. However, the single-network structure of pure zwitterionic hydrogels leads to a low toughness and strength, limiting their application in biomedical fields. In this work, a high entanglement sulfobetaine methacrylate-dopamine hydrogel (SBMA-DA-PE) with low cross-linker content and high monomer concentration is prepared by using a dopamine oxidative radical polymerization method. Compared to a regular zwitterionic hydrogel, the SBMA-DA-PE hydrogel exhibits a 5-fold increase in tensile fracture stress and a 10-fold increase in compressive fracture stress. The SBMA-DA-PE hydrogel possesses excellent mechanical properties (the maximum compressive stress ≥4.85 MPa, the maximum compressive strain ≥90%). Besides, the non-covalent interactions between catechol or ortho-quinones within the SBMA-DA-PE hydrogel, combined with strong intermolecular electrostatic interactions, endow the SBMA-DA-PE hydrogel with great self-healing capabilities and fatigue resistance. The SBMA-DA-PE hydrogel demonstrates low swellability and possesses good antifouling properties. Furthermore, the good printability and conductivity of the tough SBMA-DA-PE hydrogel endows it with new possibilities for developing biological 3D scaffolds and electronic devices. Overall, this work provides new insights into the preparation of zwitterionic hydrogels with high mechanical strength and multi-functionality for biomedical applications.
Collapse
Affiliation(s)
- Luxing Wei
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Yang Yang
- Research Institute of Petroleum Exploration & Development, Beijing, 100080, China
| | - Xiaoyong Qiu
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Jian Shen
- State Key Laboratory of Transvascular Implantation Devices & Department of Cardiology & The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, China
| | - Yiming Zhao
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Xiaolai Zhang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Baohua Hu
- Valiant Corporation Limited, Yantai, Shandong, 264006, China
| | - Teng Yang
- Valiant Corporation Limited, Yantai, Shandong, 264006, China
| | - Haichao Fu
- Valiant Corporation Limited, Yantai, Shandong, 264006, China
| | - Shuai Chen
- Valiant Corporation Limited, Yantai, Shandong, 264006, China
| | - Jun Huang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong, 250061, China
| |
Collapse
|
6
|
Moayedi S, Xia W, Lundergan L, Yuan H, Xu J. Zwitterionic Polymers for Biomedical Applications: Antimicrobial and Antifouling Strategies toward Implantable Medical Devices and Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23125-23145. [PMID: 39450830 DOI: 10.1021/acs.langmuir.4c02664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Poly(ethylene glycol) (PEG) is extensively utilized in biomedical applications due to its biocompatibility; however, its thermal instability and susceptibility to oxidative degradation significantly constrain its long-term effectiveness. Zwitterionic polymers, characterized by their distinctive structure, enhanced stability, and superior biocompatibility, offer a more advantageous alternative. These polymers exhibit super hydrophilicity, resist nonspecific protein adsorption, and maintain stability in biological environments due to their charge-neutral ionic nature. Zwitterionic polymers enhance anticancer drug delivery by precisely targeting tumor cells and facilitating an efficient drug release. Their inherent antifouling properties and prolonged circulation within the bloodstream render them highly suitable for redox-sensitive drug carriers, thereby augmenting the antitumor efficacy. Moreover, zwitterionic polymers markedly mitigate biofouling in implants, biosensors, and wound dressings, thereby improving both their functionality and their therapeutic outcomes. These advantages arise from the formation of robust hydration layers, which significantly enhance the hemocompatibility and inhibit the adhesion of proteins, platelets, and bacteria. Zwitterionic polymers, including sulfobetaine (SB), phosphorylcholine (PC), and carboxybetaine (CB), are increasingly employed in blood-contacting devices and as effective coating materials for implantable devices. This mini-review paper aims to explore the recent diverse biomedical applications of zwitterionic polymers and highlight their advantageous properties compared with unmodified polymers. We will cover their use in drug delivery systems, tumor targeting nanocarriers, antibiofouling and antibacterial activities in implantable devices, tissue engineering, and diagnostic devices, demonstrating how their unique properties can translate into different applications. Through this exploration, this Perspective will display the potential of zwitterionic polymers as innovative polymer materials in the field of biomedical engineering and beyond.
Collapse
Affiliation(s)
- Sara Moayedi
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri 63121, United States
| | - Weibo Xia
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Liam Lundergan
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri 63121, United States
| | - Heyang Yuan
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Jinjia Xu
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri 63121, United States
| |
Collapse
|
7
|
Cui Z, Wang Y, Zhang L, Qi H. Zwitterionic Peptides: From Mechanism, Design Strategies to Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56497-56518. [PMID: 39393043 DOI: 10.1021/acsami.4c08891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Zwitterionic peptides, as a type of peptide composed of charged residues, are electrically neutral, which combine the advantages of zwitterionic materials and biological peptides, exhibiting hydrophilicity and programmable properties. As attractive candidates for resisting nonspecific adsorption of biomacromolecules and microorganisms, zwitterionic peptides have been applied in materials science, biomedicine, and biochemistry over the past decade. In this review, the development of zwitterionic peptides has been systematically outlined and analyzed, including their mechanisms, structure-function relationships, and design strategies. Furthermore, this review emphasizes and discusses their recent applications for developing functional coatings, biosensors, drug delivery systems, and engineering proteins. Finally, future research perspectives and challenges of zwitterionic peptides are also prospected and discussed. This review is intended to provide clarity and insight into the design and applications of zwitterionic peptides.
Collapse
Affiliation(s)
- Zhongxin Cui
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University Tianjin 300350, P. R. China
| | - Yuefeng Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University Tianjin 300350, P. R. China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University Tianjin 300350, P. R. China
| | - Haishan Qi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University Tianjin 300350, P. R. China
| |
Collapse
|
8
|
Ji T, Shi H, Yang X, Li H, Kaplan DL, Yeo J, Huang W. Bioinspired Genetic and Chemical Engineering of Protein Hydrogels for Programable Multi-Responsive Actuation. Adv Healthc Mater 2024; 13:e2401562. [PMID: 38852041 DOI: 10.1002/adhm.202401562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Protein hydrogels with tailored stimuli-responsive features and tunable stiffness have garnered considerable attention due to the growing demand for biomedical soft robotics. However, integrating multiple responsive features toward intelligent yet biocompatible actuators remains challenging. Here, a facile approach that synergistically combines genetic and chemical engineering for the design of protein hydrogel actuators with programmable complex spatial deformation is reported. Genetically engineered silk-elastin-like proteins (SELPs) are encoded with stimuli-responsive motifs and enzymatic crosslinking sites via simulation-guided genetic engineering strategies. Chemical modifications of the recombinant proteins are also used as secondary control points to tailor material properties, responsive features, and anisotropy in SELP hydrogels. As a proof-of-concept example, diazonium coupling chemistry is exploited to incorporate sulfanilic acid groups onto the tyrosine residues in the elastin domains of SELPs to achieve patterned SELP hydrogels. These hydrogels can be programmed to perform various actuations, including controllable bending, buckling, and complex deformation under external stimuli, such as temperature, ionic strength, or pH. With the inspiration of genetic and chemical engineering in natural organisms, this work offers a predictable, tunable, and environmentally sustainable approach for the fabrication of programmed intelligent soft actuators, with implications for a variety of biomedical materials and biorobotics needs.
Collapse
Affiliation(s)
- Ting Ji
- The Zhejiang University - University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Haoyuan Shi
- J2 Lab for Engineering Living Materials, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Xinyi Yang
- The Zhejiang University - University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Hu Li
- The Zhejiang University - University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Jingjie Yeo
- J2 Lab for Engineering Living Materials, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Wenwen Huang
- The Zhejiang University - University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Department of Orthopedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
9
|
Miao Z, Zhou J. Photo-responsive anti-fouling polyzwitterionic brushes: a mesoscopic simulation. J Mater Chem B 2024; 12:8076-8086. [PMID: 38973671 DOI: 10.1039/d4tb00899e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The antifouling effects of a toothbrush-shaped photo-responsive polyzwitterionic membrane were studied via dissipative particle dynamics simulations in this work. The results reveal that the membrane modified by spiropyran methacrylate brushes displays photo-switchable and antifouling capability due to the photo-induced ring-opening reaction. Namely, surface morphology and hydrophilicity change in response to visible or UV light irradiation, which can be observed visually by protein adsorption and desorption. Further study indicates that: (1) brush-modification density can influence the structure and properties of the membrane. With low modification density, systems cannot establish an intact selective layer, which hinders the antifouling ability; as the modification density increases, the intact selective layer can be formed, which is conducive to the expression of photo-responsiveness and antifouling capability. (2) Factors of toothbrush-hair length and grafting ratio can influence the establishment of a light-responsive surface: as the grafting ratio and toothbrush-hair length increase, the light-responsive surface is gradually formed, meanwhile, the antifouling ability can be continuously reinforced under UV light irradiation. (3) As the brushes switch into a zwitterionic merocyanine state under UV exposure, the selective layer swelling becomes stronger than that with a hydrophobic spiropyran state under visible exposure. This is owing to the enhanced interaction between zwitterionic brushes and water, which is the root of the antifouling effect. The present work is expected to provide some guidelines for the design and development of novel antifouling membrane surfaces.
Collapse
Affiliation(s)
- Zhaohong Miao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China.
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China.
| |
Collapse
|
10
|
Basak S, Chatterjee R, Bandyopadhyay A. Beyond Traditional Stimuli: Exploring Salt-Responsive Bottlebrush Polymers-Trends, Applications, and Perspectives. ACS OMEGA 2024; 9:33365-33385. [PMID: 39130571 PMCID: PMC11308035 DOI: 10.1021/acsomega.4c06137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/13/2024]
Abstract
Bottlebrush polymers represent an important class of high-density side-chain-grafted polymers traditionally with high molecular weights, in which one or more polymeric side chains are tethered to each repeating unit of a linear polymer backbone, such that these macromolecules look like "bottlebrushes". The arrangement of molecular brushes is determined by side chains located at a distance considerably smaller than their unperturbed dimensions, leading to substantial monomer congestion and entropically unfavorable extension of both the backbone and the side chains. Traditionally, the conformation and physical properties of polymers are influenced by external stimuli such as solvent, temperature, pH, and light. However, a unique stimulus, salt, has recently gained attention as a means to induce shape changes in these molecular brushes. While the stimulus has been less researched to date, we see that these systems, when stimulated with salts, have the potential to be used in various engineering applications. This potential stems from the unique properties and behaviors these systems show when exposed to different salts, which could lead to new solutions and improvements in engineering processes, thus serving as the primary motivation for this narrative, as we aim to explore and highlight the various ways these systems can be utilized and the benefits they could bring to the field of engineering. This Review aims to introduce the concept of stimuli-responsive bottlebrush polymers, explore the evolutionary trajectory, delve into current trends in salt-responsive bottlebrush polymers, and elucidate how these polymers are addressing a variety of engineering challenges.
Collapse
Affiliation(s)
- Sayan Basak
- Department of Polymer Science
and Technology, University of Calcutta, 92, A.P.C Road, Kolkata 700 009, West
Bengal, India
| | - Rahul Chatterjee
- Department of Polymer Science
and Technology, University of Calcutta, 92, A.P.C Road, Kolkata 700 009, West
Bengal, India
| | - Abhijit Bandyopadhyay
- Department of Polymer Science
and Technology, University of Calcutta, 92, A.P.C Road, Kolkata 700 009, West
Bengal, India
| |
Collapse
|
11
|
Pathan S, Jayakannan M. Zwitterionic Strategy to Stabilize Self-Immolative Polymer Nanoarchitecture under Physiological pH for Drug Delivery In Vitro and In Vivo. Adv Healthc Mater 2024; 13:e2304599. [PMID: 38574242 DOI: 10.1002/adhm.202304599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/29/2024] [Indexed: 04/06/2024]
Abstract
The major bottleneck in using polymer nanovectors for biomedical application, particularly those based on self-immolative poly(amino ester) (PAE), lies in their uncontrolled autodegradation at physiological pH before they can reach the intended target. Here, an elegant triblock-copolymer strategy is designed to stabilize the unstable PAE chains via zwitterionic interactions under physiological pH (pH 7.4) and precisely program their enzyme-responsive biodegradation specifically within the intracellular compartments, ensuring targeted delivery of the cargoes. To achieve this goal, biodegradable polycaprolactone (PCL) platform is chosen, and structure-engineered several di- and triblock architectures to arrive the precise macromolecular geometry. The hydrophobic-PCL core and hydrophilic anionic-PCL block at the periphery shield PAEs against autodegradation, thereby ensuring stability under physiological pH in PBS, FBS, cell culture medium and bloodstream. The clinical anticancer drug doxorubicin and deep-tissue penetrable near-infrared IR-780 biomarker is encapsulated to study their biological actions by in vitro live cancer cells and in vivo bioimaging in live animals. These zwitterions are biocompatible, nonhemolytic, and real-time in vitro live-cell confocal studies have confirmed their internalization and enzymatic biodegradation in the endo-lysosomal compartments to deliver the payload. In vivo bioimaging establishes their prolonged blood circulation for over 72 h, and the biodistribution analysis reveals the accumulation of nanoparticles predominantly in the excretory organs.
Collapse
Affiliation(s)
- Shahidkhan Pathan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
| |
Collapse
|
12
|
Beck-Broichsitter M. Bioinspired zwitterionic triblock copolymers designed for colloidal drug delivery: 2 - Biological evaluation. Colloids Surf B Biointerfaces 2024; 238:113886. [PMID: 38608461 DOI: 10.1016/j.colsurfb.2024.113886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/22/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024]
Abstract
In this work, poly(lactide) nanoparticles were equipped with a bioinspired coating layer based on poly[2-(methacryloyloxy)ethyl phosphorylcholine] and then evaluated when administered to the lungs and after intravenous injection. Compared to the plain counterparts, the chosen zwitterionic polymer shell prevented the coated colloidal formulation from aggregation and conditioned it for lower cytotoxicity, protein adsorption, complement activation and phagocytic cell uptake. Consequently, no interference with the biophysical function of the lung surfactant system could be detected accompanied by negligible protein and cell influx into the bronchoalveolar space after intratracheal administration. When injected into the central compartment, the coated formulation showed a prolonged circulation half-life and a delayed biodistribution to the liver. Taken together, colloidal drug delivery vehicles would clearly benefit from the investigated poly[2-(methacryloyloxy)ethyl phosphorylcholine]-based polymer coatings.
Collapse
Affiliation(s)
- Moritz Beck-Broichsitter
- Department of Pharmaceutics and Biopharmacy, Philipps-Universität, Marburg, Germany; Medical Clinic II, Department of Internal Medicine, Justus-Liebig-Universität, Giessen, Germany.
| |
Collapse
|
13
|
Li YH, Huang ZJ, Zhang JQ, Ye MN, Jun M, Wang W, Chen XL, Wang GH. Synergistic antibacterial and antifouling wound dressings: Integration of photothermal-activated no release and zwitterionic surface modification. Int J Pharm 2024; 657:124160. [PMID: 38663642 DOI: 10.1016/j.ijpharm.2024.124160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 04/30/2024]
Abstract
Addressing the pervasive issue of bacteria and biofilm infections is crucial in the development of advanced antifouling wound dressings. In this study, a novel wound healing treatment using sulfobetaine (SBMA) decorated electrospun fibrous membrane based on polycaprolactone (PCL)/nitric oxide (NO) donors was developed. The fabrication involved a dual strategy, first integrating NO donors into mesoporous polydopamine (MPDA) and complexed with PCL/PEI to electrospin nanofibers. The fibrous membrane exhibited a potent antibacterial response upon irradiation at 808 nm, owing to a combination of NO and photothermal effect that effectively targets bacteria and disrupts biofilms. Surface functionalization of the membrane with PEI allowed for the attachment of SBMA via Michael addition, fabricating a zwitterionic surface, which significantly hinders protein adsorption and reduces biofilm formation on the wound dressing. In vitro and in vivo assessments confirmed the rapid bactericidal capabilities and its efficacy in biofilm eradication. Combining photothermal activity, targeted NO release and antifouling surface, this multifaceted wound dressing addresses key challenges in bacterial infection management and biofilm eradication, promoting efficient wound healing.
Collapse
Affiliation(s)
- Yan-Hong Li
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, 523710 Dongguan, China
| | - Zeng-Jin Huang
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, 523710 Dongguan, China
| | - Jia-Qi Zhang
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, 523710 Dongguan, China
| | - Meng-Nan Ye
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, 523710 Dongguan, China
| | - Mei Jun
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, 523710 Dongguan, China
| | - Wei Wang
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, 523710 Dongguan, China
| | - Xiao-Li Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China.
| | - Guan-Hai Wang
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, 523710 Dongguan, China; PCFM Lab, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
14
|
Zhang Y, Sun C. Current status, challenges and prospects of antifouling materials for oncology applications. Front Oncol 2024; 14:1391293. [PMID: 38779096 PMCID: PMC11109453 DOI: 10.3389/fonc.2024.1391293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Targeted therapy has become crucial to modern translational science, offering a remedy to conventional drug delivery challenges. Conventional drug delivery systems encountered challenges related to solubility, prolonged release, and inadequate drug penetration at the target region, such as a tumor. Several formulations, such as liposomes, polymers, and dendrimers, have been successful in advancing to clinical trials with the goal of improving the drug's pharmacokinetics and biodistribution. Various stealth coatings, including hydrophilic polymers such as PEG, chitosan, and polyacrylamides, can form a protective layer over nanoparticles, preventing aggregation, opsonization, and immune system detection. As a result, they are classified under the Generally Recognized as Safe (GRAS) category. Serum, a biological sample, has a complex composition. Non-specific adsorption of chemicals onto an electrode can lead to fouling, impacting the sensitivity and accuracy of focused diagnostics and therapies. Various anti-fouling materials and procedures have been developed to minimize the impact of fouling on specific diagnoses and therapies, leading to significant advancements in recent decades. This study provides a detailed analysis of current methodologies using surface modifications that leverage the antifouling properties of polymers, peptides, proteins, and cell membranes for advanced targeted diagnostics and therapy in cancer treatment. In conclusion, we examine the significant obstacles encountered by present technologies and the possible avenues for future study and development.
Collapse
Affiliation(s)
| | - Congcong Sun
- University-Town Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Liu R, Zhao Z, Yang Q, Chen S, Yan Z, Li X, Liang L, Guo B, Wang B, Zhang H, Yao F, Li J. A Single-Component Janus Zwitterionic Hydrogel Patch with a Bionic Microstructure for Postoperative Adhesion Prevention. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38669466 DOI: 10.1021/acsami.4c01845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The development of anti-adhesion hydrogels for preventing postoperative adhesions is an ongoing challenge, particularly in achieving a balance between exceptional antifouling properties and effective in situ tissue retention. In this study, we propose a unique approach with the design of a single-component Janus zwitterionic hydrogel patch featuring a bionic microstructure. The Janus patches were prepared through free radical polymerization of sulfobetaine methacrylate with N, N'-methylenebis(2-propenamide) as the cross-linker. The incorporation of hexagonal facets separated by interconnecting grooves on one side imparts durable and reliable in situ retention capabilities to the Janus hydrogel patch when it is applied to traumatized tissues. The opposing flat surface exhibits outstanding resistance to bacteria, proteins, and cell adhesion, due to the superhydrophilicity and excellent antifouling characteristics of zwitterionic polymers. This dual functionality empowers the Janus hydrogel patch to mitigate adhesions between traumatized and surrounding tissues. The hexagonal and groove bionic microstructures facilitate rapid drainage, promoting swift contact with the tissue for increased adhesion strength, while independent hexagonal microfacets enhance the peeling energy. In an in vivo setting, Janus zwitterionic hydrogel patches with surface microstructures form mutually embedded structures with the cecum surface, minimizing the likelihood of slippage and detachment. Remarkably, in vivo experiments involving abdominal wall cecum injuries illustrate the Janus zwitterionic hydrogel patch's superior anti-adhesion effectiveness compared to commercial controls. Thus, the Janus hydrogel patch, distinguished by its bionic microstructure surface, presents substantial potential in the biomedical field for averting postoperative adhesions.
Collapse
Affiliation(s)
- Rui Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Zhongming Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Qi Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Shuang Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Zhuojun Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xiuqiang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Lei Liang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Bingyan Guo
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Baoqun Wang
- Qingdao Chenland Marine Biological Engineering Company, Ltd., Qingdao 266100, China
| | - Hong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Junjie Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
- School of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining 810007, Qinghai, China
| |
Collapse
|
16
|
Liu X, Yu L, Wei J, Huang Y, Yang L, Ning J, Su Q, Li H, Xin J, Jia K. Mussel-Inspired Antimicrobial and Antifouling Coating Constructed by the Combination of Zwitterionic Copolymers and Silver Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8654-8664. [PMID: 38588599 DOI: 10.1021/acs.langmuir.4c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Biofouling and bacterial infections are significant challenges in biomedical devices. In this study, a biocompatible dual-functional coating with antimicrobial and antifouling properties is developed by co-depositing the zwitterionic copolymer and silver nanoparticles via a dopamine-assisted strategy. Inspired by mussel adhesion, the coating exhibits substrate-independent adhesion as a result of the formation of irreversible covalent bonds. The zwitterionic copolymer in the dual coating plays a crucial role in improving surface wettability and reducing protein adsorption and platelet and bacterial adhesion, thereby improving its antifouling property significantly. The silver nanoparticles reduced by self-polymerized polydopamine without the addition of any chemical reductants can effectively improve the antimicrobial activity. Furthermore, as the zwitterion content in the zwitterion polymer increases, the antibacterial and antifouling properties of the coating can be further advanced. The simple and effective approach presented here provides a promising pathway for constructing potent antibacterial and antifouling surfaces, demonstrating great potential for clinical applications in implanted materials.
Collapse
Affiliation(s)
- Xingxing Liu
- Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510000, People's Republic of China
| | - Longfei Yu
- Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510000, People's Republic of China
| | - Jiafeng Wei
- Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510000, People's Republic of China
| | - Yinyin Huang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, People's Republic of China
| | - Lan Yang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, People's Republic of China
| | - Junhua Ning
- Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510000, People's Republic of China
| | - Qiuping Su
- Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510000, People's Republic of China
| | - Huanling Li
- Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510000, People's Republic of China
| | - Jinlan Xin
- Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510000, People's Republic of China
| | - Kangle Jia
- Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510000, People's Republic of China
| |
Collapse
|
17
|
Zhang J, Lv S, Zhao X, Ma S, Zhou F. Functional Zwitterionic Polyurethanes: State-of-the-Art Review. Macromol Rapid Commun 2024; 45:e2300606. [PMID: 38087799 DOI: 10.1002/marc.202300606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/01/2023] [Indexed: 12/22/2023]
Abstract
Recent advancements in bioengineering and medical devices have been greatly influenced and dominated by synthetic polymers, particularly polyurethanes (PUs). PUs offer customizable mechanical properties and long-term stability, but their inherent hydrophobic nature poses challenges in practically biological application processes, such as interface high friction, strong protein adsorption, and thrombosis. To address these issues, surface modifications of PUs for generating functionally hydrophilic layers have received widespread attention, but the durability of generated surface functionality is poor due to irreversible mechanical wear or biodegradation. As a result, numerous researchers have investigated bulk modification techniques to incorporate zwitterionic polymers or groups onto the main or side chains of PUs, thereby improving their hydrophilicity and biocompatibility. This comprehensive review presents an extensive overview of notable zwitterionic PUs (ZPUs), including those based on phosphorylcholine, sulfobetaine, and carboxybetaine. The review explores their wide range of biomedical applications, from blood-contacting devices to antibacterial coatings, fouling-resistant marine coatings, separation membranes, lubricated surfaces, and shape memory and self-healing materials. Lastly, the review summarizes the challenges and future prospects of ZPUs in biological applications.
Collapse
Affiliation(s)
- Jinshuai Zhang
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 264006, China
| | - Siyao Lv
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 264006, China
| | - Xiaoduo Zhao
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 264006, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shuanhong Ma
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 264006, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
18
|
Lu Y, Fan L, Wang J, Hu M, Wei B, Shi P, Li J, Feng J, Zheng Y. Cancer Cell Membrane-Based Materials for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306540. [PMID: 37814370 DOI: 10.1002/smll.202306540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/18/2023] [Indexed: 10/11/2023]
Abstract
The nanodelivery system provides a novel direction for disease diagnosis and treatment; however, its delivery effectiveness is restricted by the short biological half-life and inadequate tumor targeting. The immune evasion properties and homologous targeting capabilities of natural cell membranes, particularly those of cancer cell membranes (CCM), have gained significant interest. The integration of CCM and nanoparticles has resulted in the emergence of CCM-based nanoplatforms (CCM-NPs), which have gained significant attention due to their unique properties. CCM-NPs not only prolong the blood circulation time of core nanoparticles, but also direct them for homologous tumor targeting. Herein, the history and development of CCM-NPs as well as how these platforms have been used for biomedical applications are discussed. The application of CCM-NPs for cancer therapy will be described in detail. Translational efforts are currently under way and further research to address key areas of need will ultimately be required to facilitate the successful clinical adoption of CCM-NPs.
Collapse
Affiliation(s)
- Yongping Lu
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
- Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Linming Fan
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Jun Wang
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Mingxiang Hu
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Baogang Wei
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Ping Shi
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Jinyan Feng
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Yu Zheng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
19
|
Ouyang X, Liu Y, Zheng K, Pang Z, Peng S. Recent advances in zwitterionic nanoscale drug delivery systems to overcome biological barriers. Asian J Pharm Sci 2024; 19:100883. [PMID: 38357524 PMCID: PMC10861844 DOI: 10.1016/j.ajps.2023.100883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/28/2023] [Accepted: 12/22/2023] [Indexed: 02/16/2024] Open
Abstract
Nanoscale drug delivery systems (nDDS) have been employed widely in enhancing the therapeutic efficacy of drugs against diseases with reduced side effects. Although several nDDS have been successfully approved for clinical use up to now, biological barriers between the administration site and the target site hinder the wider clinical adoption of nDDS in disease treatment. Polyethylene glycol (PEG)-modification (or PEGylation) has been regarded as the gold standard for stabilising nDDS in complex biological environment. However, the accelerated blood clearance (ABC) of PEGylated nDDS after repeated injections becomes great challenges for their clinical applications. Zwitterionic polymer, a novel family of anti-fouling materials, have evolved as an alternative to PEG due to their super-hydrophilicity and biocompatibility. Zwitterionic nDDS could avoid the generation of ABC phenomenon and exhibit longer blood circulation time than the PEGylated analogues. More impressively, zwitterionic nDDS have recently been shown to overcome multiple biological barriers such as nonspecific organ distribution, pressure gradients, impermeable cell membranes and lysosomal degradation without the need of any complex chemical modifications. The realization of overcoming multiple biological barriers by zwitterionic nDDS may simplify the current overly complex design of nDDS, which could facilitate their better clinical translation. Herein, we summarise the recent progress of zwitterionic nDDS at overcoming various biological barriers and analyse their underlying mechanisms. Finally, prospects and challenges are introduced to guide the rational design of zwitterionic nDDS for disease treatment.
Collapse
Affiliation(s)
- Xumei Ouyang
- Zhuhai Institute of Translational Medicine, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China
| | - Yu Liu
- Zhuhai Institute of Translational Medicine, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China
| | - Ke Zheng
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Zhiqing Pang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shaojun Peng
- Zhuhai Institute of Translational Medicine, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China
| |
Collapse
|
20
|
Song X, Man J, Qiu Y, Wang J, Liu J, Li R, Zhang Y, Li J, Li J, Chen Y. Design, preparation, and characterization of lubricating polymer brushes for biomedical applications. Acta Biomater 2024; 175:76-105. [PMID: 38128641 DOI: 10.1016/j.actbio.2023.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/21/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The lubrication modification of biomedical devices significantly enhances the functionality of implanted interventional medical devices, thereby providing additional benefits for patients. Polymer brush coating provides a convenient and efficient method for surface modification while ensuring the preservation of the substrate's original properties. The current research has focused on a "trial and error" method to finding polymer brushes with superior lubricity qualities, which is time-consuming and expensive, as obtaining effective and long-lasting lubricity properties for polymer brushes is difficult. This review summarizes recent research advances in the biomedical field in the design, material selection, preparation, and characterization of lubricating and antifouling polymer brushes, which follow the polymer brush development process. This review begins by examining various approaches to polymer brush design, including molecular dynamics simulation and machine learning, from the fundamentals of polymer brush lubrication. Recent advancements in polymer brush design are then synthesized and potential avenues for future research are explored. Emphasis is placed on the burgeoning field of zwitterionic polymer brushes, and highlighting the broad prospects of supramolecular polymer brushes based on host-guest interactions in the field of self-repairing polymer brush applications. The review culminates by providing a summary of methodologies for characterizing the structural and functional attributes of polymer brushes. It is believed that a development approach for polymer brushes based on "design-material selection-preparation-characterization" can be created, easing the challenge of creating polymer brushes with high-performance lubricating qualities and enabling the on-demand creation of coatings. STATEMENT OF SIGNIFICANCE: Biomedical devices have severe lubrication modification needs, and surface lubrication modification by polymer brush coating is currently the most promising means. However, the design and preparation of polymer brushes often involves "iterative testing" to find polymer brushes with excellent lubrication properties, which is both time-consuming and expensive. This review proposes a polymer brush development process based on the "design-material selection-preparation-characterization" strategy and summarizes recent research advances and trends in the design, material selection, preparation, and characterization of polymer brushes. This review will help polymer brush researchers by alleviating the challenges of creating polymer brushes with high-performance lubricity and promises to enable the on-demand construction of polymer brush lubrication coatings.
Collapse
Affiliation(s)
- Xinzhong Song
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jia Man
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China.
| | - Yinghua Qiu
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jiali Wang
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Jianing Liu
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Ruijian Li
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Yongqi Zhang
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jianyong Li
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jianfeng Li
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Yuguo Chen
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| |
Collapse
|
21
|
Dei N, Ishihara K, Matsumoto A, Kojima C. Preparation and Characterization of Acrylic and Methacrylic Phospholipid-Mimetic Polymer Hydrogels and Their Applications in Optical Tissue Clearing. Polymers (Basel) 2024; 16:241. [PMID: 38257040 PMCID: PMC10820725 DOI: 10.3390/polym16020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/28/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The 2-methacryloyloxyethyl phosphorylcholine (MPC) polymers are mimetic to phospholipids, being widely used as biocompatible polymers. In our previous study, MPC polymer hydrogels proved more effective for optical tissue clearing compared to acrylamide (AAm) polymer hydrogels. In the present study, 2-acryloyloxyethyl phosphorylcholine (APC) was synthesized and employed to create hydrogels for a comparative analysis with methacrylic MPC-based hydrogels. APC, an acrylic monomer, was copolymerized with AAm in a similar reactivity. In contrast, MPC, as a methacrylic monomer, demonstrated higher copolymerization reactivity than AAm, leading to a spontaneously delayed two-step polymerization behavior. This suggests that the polymer sequences and network structures became heterogeneous when both methacrylic and acrylic monomers, as well as crosslinkers, were present in the copolymerization system. The molecular weight of the APC polymers was considerably smaller than that of the MPC polymers due to the formation of mid-chain radicals and subsequent β-scission during polymerization. The swelling ratios in water and strain sweep profiles of hydrogels prepared using acrylic and methacrylic compounds differed from those of hydrogels prepared using only acrylic compounds. This implies that copolymerization reactivity influences the polymer network structures and crosslinking density in addition to the copolymer composition. APC-based hydrogels are effective for the optical clearing of tumor tissues and are applicable to both passive and electrophoretic methods.
Collapse
Affiliation(s)
- Nanako Dei
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan (A.M.)
| | - Kazuhiko Ishihara
- Division of Materials & Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan;
| | - Akikazu Matsumoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan (A.M.)
| | - Chie Kojima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan (A.M.)
| |
Collapse
|
22
|
ISHIHARA K. Biomimetic polymers with phosphorylcholine groups as biomaterials for medical devices. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:579-606. [PMID: 39662944 PMCID: PMC11704457 DOI: 10.2183/pjab.100.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/01/2024] [Indexed: 12/13/2024]
Abstract
Biomimetic molecular designs can yield superior biomaterials. Polymers with a phosphorylcholine group, a polar group of phospholipid molecules, are particularly interesting. A methacrylate monomer, 2-methacryloyloxyethyl phosphorylcholine (MPC), was developed using efficient synthetic reactions and purification techniques. This process has been applied in industrial production to supply MPC globally. Polymers with various structures can be readily synthesized using MPC and their properties have been studied. The MPC polymer surface has a highly hydrated structure in biological conditions, leading to the prevention of adsorption of proteins and lipid molecules, adhesion of cells, and inhibition of bacterial adhesion and biofilm formation. Additionally, it provides an extremely lubricious surface. MPC polymers are used in various applications and can be stably immobilized on material surfaces such as metals and ceramics and polymers such as elastomers. They are also stable under sterilization and in vivo conditions. This makes them ideal for application in the surface treatment of various medical devices, including artificial organs, implanted in humans.
Collapse
Affiliation(s)
- Kazuhiko ISHIHARA
- Division of Materials & Manufacturing Science, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
23
|
Chang WY, Chen CY. Antifouling Zwitterionic Nanofibrous Wound Dressing for Long-Lasting Antibacterial Photodynamic Therapy. ACS OMEGA 2023; 8:36906-36918. [PMID: 37841143 PMCID: PMC10569006 DOI: 10.1021/acsomega.3c03964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023]
Abstract
Nanofibrous mats as a wound dressing have received great attention in recent year. The development of biocompatible dressings with antibiofouling capability and long-lasting antibacterial properties is important but challenging. Antibacterial photodynamic therapy (aPDT) effectively eliminates pathogens via a photodynamic process that can circumvent the emergence of antibiotic-resistant pathogens. In this study, we integrated the zwitterionic materials (2-methacryloyloxyethyl phosphorylcholine (MPC) moiety) and aPDT photosensitizer, methylene blue (MB), to fabricate a long-lasting antibacterial nanofibrous mat using electrospinning technology. The prepared nanofibers possessed an appropriate water absorption and retention ability, superior cytocompatibility, and antibiofouling ability against both proteins and L929 cell adhesion. MB-loaded nanofibrous mats have exhibited superior aPDT against Gram-positive Staphylococcus aureus compared to Gram-negative Escherichia coli under moderate irradiation (100 W m-2) due to the presence of an extra outer membrane of Gram-negative bacteria serving as a protective barrier. In vitro release study demonstrated that the nanofibrous mat had a long-lasting drug release profile, which can efficiently suppress bacterial growth via aPDT. The antibacterial ability of the MB-loaded nanofibrous mat was commensurate or slightly inferior to antibiotics such as tetracycline and kanamycin, suggesting that it has the potential to be used as an antibiotic alternative. Overall, this zwitterionic nanofibrous mat with long-lasting aPDT function and nonadherent properties has potential as a promising antibacterial wound dressing.
Collapse
Affiliation(s)
- Wen-Yen Chang
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi County 62102, Taiwan
| | - Ching-Yi Chen
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi County 62102, Taiwan
| |
Collapse
|
24
|
Eng YJ, Nguyen TM, Luo HK, Chan JMW. Antifouling polymers for nanomedicine and surfaces: recent advances. NANOSCALE 2023; 15:15472-15512. [PMID: 37740391 DOI: 10.1039/d3nr03164k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Antifouling polymers are materials that can resist nonspecific interactions with cells, proteins, and other biomolecules. Typically, they are hydrophilic polymers with polar or charged moieties that are capable of strong nonbonding interactions with water molecules. This propensity to bind water generates a surface hydration layer that reduces nonspecific interactions with other molecules and is paramount to the antifouling behavior. This property is especially useful for nanoscale applications such as nanomedicine and surface modifications at the molecular level. In nanomedicine, antifouling polymers such as poly(ethylene glycol) and its alternatives play a key role in shielding drug molecules and therapeutic proteins/genes from the immune system within nanoassemblies, thereby enabling effective delivery to target tissues. For coatings, antifouling polymers help to prevent adhesion of cells and molecules to surfaces and are thus valued in marine and biomedical device applications. In this Review, we survey recent advances in antifouling polymers in the context of nanomedicine and coatings, while shining the spotlight on the major polymer classes such as PEG, polyzwitterions, poly(oxazoline)s, and other nonionic hydrophilic polymers.
Collapse
Affiliation(s)
- Yi Jie Eng
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Tuan Minh Nguyen
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - He-Kuan Luo
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Julian M W Chan
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| |
Collapse
|
25
|
Anthi J, Vaněčková E, Spasovová M, Houska M, Vrabcová M, Vogelová E, Holubová B, Vaisocherová-Lísalová H, Kolivoška V. Probing charge transfer through antifouling polymer brushes by electrochemical methods: The impact of supporting self-assembled monolayer chain length. Anal Chim Acta 2023; 1276:341640. [PMID: 37573118 DOI: 10.1016/j.aca.2023.341640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 08/14/2023]
Abstract
Ultrathin surface-tethered polymer brushes represent attractive platforms for a wide range of sensing applications in strategically vital areas such as medicine, forensics, or security. The recent trends in such developments towards "real world conditions" highlighted the role of zwitterionic poly(carboxybetaine) (pCB) brushes which provide excellent antifouling properties combined with bio-functionalization capacity. Highly dense pCB brushes are usually prepared by the "grafting from" polymerization triggered by initiators on self-assembled monolayers (SAMs). Here, multi-methodological experimental studies are pursued to elucidate the impact of the alkanethiolate SAM chain length (C6, C8 and C11) on structural and functional properties of antifouling poly(carboxybetaine methacrylamide) (pCBMAA) brush. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in a custom-made 3D printed cell employing [Ru(NH3)6]3+/2+ redox probe were used to investigate penetrability of SAM/pCBMAA bilayers for small molecules and interfacial charge transfer characteristics. The biofouling resistance of pCBMAA brushes was characterized by surface plasmon resonance; ellipsometry and FT-IRRAS spectroscopy were used to determine swelling and relative density of the brushes synthesized from initiator-bearing SAMs with varied carbon chain length. The SAM length was found to have a substantial impact on all studied characteristics; the highest value of charge transfer resistance (Rct) was observed for denser pCBMAA on longer-chain (C11) SAM when compared to shorter (C8/C6) SAMs. The observed high value of Rct for C11 implies a limitation for the analytical performance of electrochemical sensing methods. At the same time, the pCBMAA brushes on C11 SAM exhibited the best bio-fouling resistance among inspected systems. This demonstrates that proper selection of supporting structures for brushes is critical in the design of these assemblies for biosensing applications.
Collapse
Affiliation(s)
- Judita Anthi
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 00, Prague, Czech Republic; Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28, Prague, Czech Republic
| | - Eva Vaněčková
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23, Prague, Czech Republic
| | - Monika Spasovová
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 00, Prague, Czech Republic
| | - Milan Houska
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 00, Prague, Czech Republic
| | - Markéta Vrabcová
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 00, Prague, Czech Republic
| | - Eva Vogelová
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 00, Prague, Czech Republic
| | - Barbora Holubová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28, Prague, Czech Republic
| | - Hana Vaisocherová-Lísalová
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 00, Prague, Czech Republic.
| | - Viliam Kolivoška
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23, Prague, Czech Republic.
| |
Collapse
|
26
|
López-Ríos de Castro R, Ziolek RM, Lorenz CD. Topology-controlled self-assembly of amphiphilic block copolymers. NANOSCALE 2023; 15:15230-15237. [PMID: 37671739 PMCID: PMC10540979 DOI: 10.1039/d3nr01204b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/16/2023] [Indexed: 09/07/2023]
Abstract
Contemporary synthetic chemistry approaches can be used to yield a range of distinct polymer topologies with precise control. The topology of a polymer strongly influences its self-assembly into complex nanostructures however a clear mechanistic understanding of the relationship between polymer topology and self-assembly has not yet been developed. In this work, we use atomistic molecular dynamics simulations to provide a nanoscale picture of the self-assembly of three poly(ethylene oxide)-poly(methyl acrylate) block copolymers with different topologies into micelles. We find that the topology affects the ability of the micelle to form a compact hydrophobic core, which directly affects its stability. Also, we apply unsupervised machine learning techniques to show that the topology of a polymer affects its ability to take a conformation in response to the local environment within the micelles. This work provides foundations for the rational design of polymer nanostructures based on their underlying topology.
Collapse
Affiliation(s)
- Raquel López-Ríos de Castro
- Biological Physics and Soft Matter Group, Department of Physics, King's College London, London, WC2R 2LS, UK.
- Department of Chemistry, King's College London, London, SE1 1DB, UK
| | - Robert M Ziolek
- Biological Physics and Soft Matter Group, Department of Physics, King's College London, London, WC2R 2LS, UK.
| | - Christian D Lorenz
- Biological Physics and Soft Matter Group, Department of Physics, King's College London, London, WC2R 2LS, UK.
| |
Collapse
|
27
|
Shakya AK, Nandakumar KS. Polymer Chemistry Defines Adjuvant Properties and Determines the Immune Response against the Antigen or Vaccine. Vaccines (Basel) 2023; 11:1395. [PMID: 37766073 PMCID: PMC10537360 DOI: 10.3390/vaccines11091395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Activation of the immune system is a needed for designing new antigen/drug delivery systems to develop new therapeutics and for developing animal disease models to study the disease pathogenesis. A weak antigen alone is insufficient to activate the immune system. Sometimes, assistance in the form of polymers is needed to control the release of antigens under in vivo conditions or in the form of an adjuvant to activate the immune system efficiently. Many kinds of polymers from different functional groups are suitable as microbial antigens for inducing therapeutic immune responses against infectious diseases at the preclinical level. The choice of the functionality of polymer varies as per the application type. Polymers from the acid and ester groups are the most common types investigated for protein-based antigens. However, electrostatic interaction-displaying polymers like cationic polymers are the most common type for nucleic acid-based antigens. Metal coordination chemistry is commonly used in polymers designed for cancer immunotherapeutic applications to suppress inflammation and induce a protective immune response. Amide chemistry is widely deployed in polymers used to develop antigen-specific disease models like the experimental autoimmune arthritis murine model.
Collapse
Affiliation(s)
| | - Kutty Selva Nandakumar
- Department of Environmental and Biosciences, School of Business, Innovation and Sustainability, Halmstad University, 30118 Halmstad, Sweden
| |
Collapse
|
28
|
Mao D, Wu YY, Tu Y. Unexpectedly resisting protein adsorption on self-assembled monolayers terminated with two hydrophilic hydroxyl groups. Phys Chem Chem Phys 2023; 25:21376-21382. [PMID: 37530059 DOI: 10.1039/d3cp02376a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
OH-terminated self-assembled monolayers, as protein-resistant surfaces, have significant potential in biocompatible implant devices, which can avoid or reduce adverse reactions caused by protein adhesion to biomaterial surfaces, such as thrombosis, immune response and inflammation. Here, molecular dynamics simulations were performed to evaluate the degree of protein adsorption on the self-assembled monolayer terminated with two hydrophilic OH groups ((OH)2-SAM) at packing densities (Σ) of 4.5 nm-2 and 6.5 nm-2, respectively. The results show that the structure of the (OH)2-SAM itself, i.e., a nearly perfect hexagonal-ice-like hydrogen bond structure in the OH matrix of the (OH)2-SAM at Σ = 4.5 nm-2 sharply reduces the number of hydrogen bonds (i.e., 0.7 ± 0.27) formed between the hydrophobic (OH)2-SAM surface and protein. While for Σ = 6.5 nm-2, the hydrophilic (OH)2-SAM surface can provide more hydrogen bonding sites to form hydrogen bonds (i.e., 6.2 ± 1.07) with protein. The number of hydrogen bonds formed between the (OH)2-SAM and protein at Σ = 6.5 nm-2 is ∼8 times higher than that at Σ = 4.5 nm-2, reflecting the excellent resistance to protein adsorption exhibited by the structure of the (OH)2-SAM itself at Σ = 4.5 nm-2. Compared with a traditional physical barrier effect formed by a large number of hydrogen bonds between the (OH)2-SAM and water at Σ = 6.5 nm-2, the structure of the (OH)2-SAM itself at Σ = 4.5 nm-2 proposed in this study significantly improves the performance of the (OH)2-SAM resistance to protein adsorption, which provides new insights into the mechanism of resistance to protein adsorption on the (OH)2-SAM.
Collapse
Affiliation(s)
- Dangxin Mao
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China.
| | - Yuan-Yan Wu
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China.
| | - Yusong Tu
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China.
| |
Collapse
|
29
|
Shih CP, Tang X, Kuo CW, Chueh DY, Chen P. Design principles of bioinspired interfaces for biomedical applications in therapeutics and imaging. Front Chem 2022; 10:990171. [PMID: 36405322 PMCID: PMC9673126 DOI: 10.3389/fchem.2022.990171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/08/2022] [Indexed: 09/29/2023] Open
Abstract
In the past two decades, we have witnessed rapid developments in nanotechnology, especially in biomedical applications such as drug delivery, biosensing, and bioimaging. The most commonly used nanomaterials in biomedical applications are nanoparticles, which serve as carriers for various therapeutic and contrast reagents. Since nanomaterials are in direct contact with biological samples, biocompatibility is one of the most important issues for the fabrication and synthesis of nanomaterials for biomedical applications. To achieve specific recognition of biomolecules for targeted delivery and biomolecular sensing, it is common practice to engineer the surfaces of nanomaterials with recognition moieties. This mini-review summarizes different approaches for engineering the interfaces of nanomaterials to improve their biocompatibility and specific recognition properties. We also focus on design strategies that mimic biological systems such as cell membranes of red blood cells, leukocytes, platelets, cancer cells, and bacteria.
Collapse
Affiliation(s)
- Chun-Pei Shih
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Xiaofang Tang
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Chiung Wen Kuo
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Di-Yen Chueh
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
30
|
Ishihara K. Biomimetic materials based on zwitterionic polymers toward human-friendly medical devices. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:498-524. [PMID: 36117516 PMCID: PMC9481090 DOI: 10.1080/14686996.2022.2119883] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 06/01/2023]
Abstract
This review summarizes recent research on the design of polymer material systems based on biomimetic concepts and reports on the medical devices that implement these systems. Biomolecules such as proteins, nucleic acids, and phospholipids, present in living organisms, play important roles in biological activities. These molecules are characterized by heterogenic nature with hydrophilicity and hydrophobicity, and a balance of positive and negative charges, which provide unique reaction fields, interfaces, and functionality. Incorporating these molecules into artificial systems is expected to advance material science considerably. This approach to material design is exceptionally practical for medical devices that are in contact with living organisms. Here, it is focused on zwitterionic polymers with intramolecularly balanced charges and introduce examples of their applications in medical devices. Their unique properties make these polymers potential surface modification materials to enhance the performance and safety of conventional medical devices. This review discusses these devices; moreover, new surface technologies have been summarized for developing human-friendly medical devices using zwitterionic polymers in the cardiovascular, cerebrovascular, orthopedic, and ophthalmology fields.
Collapse
Affiliation(s)
- Kazuhiko Ishihara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| |
Collapse
|
31
|
Víšová I, Houska M, Vaisocherová-Lísalová H. Biorecognition antifouling coatings in complex biological fluids: a review of functionalization aspects. Analyst 2022; 147:2597-2614. [PMID: 35621143 DOI: 10.1039/d2an00436d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent progress in biointerface research has highlighted the role of antifouling functionalizable coatings in the development of advanced biosensors for point-of-care bioanalytical and biomedical applications dealing with real-world complex samples. The resistance to nonspecific adsorption promotes the biorecognition performance and overall increases the reliability and specificity of the analysis. However, the process of modification with biorecognition elements (so-called functionalization) may influence the resulting antifouling properties. The extent of these effects concerning both functionalization procedures potentially changing the surface architecture and properties, and the physicochemical properties of anchored biorecognition elements, remains unclear and has not been summarized in the literature yet. This critical review summarizes these key functionalization aspects with respect to diverse antifouling architectures showing low or ultra-low fouling quantitative characteristics in complex biological media such as bodily fluids or raw food samples. The subsequent discussion focuses on the impact of functionalization on fouling resistance. Furthermore, this review discusses some of the drawbacks of available surface sensitive characterization methods and highlights the importance of suitable assessment of the resistance to fouling.
Collapse
Affiliation(s)
- Ivana Víšová
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague 8, Czech Republic.
| | - Milan Houska
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague 8, Czech Republic.
| | - Hana Vaisocherová-Lísalová
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague 8, Czech Republic.
| |
Collapse
|
32
|
Poulladofonou G, Neumann K. Poly(sulfur ylides): a new class of zwitterionic polymers with distinct thermal and solution behaviour. Polym Chem 2022. [DOI: 10.1039/d2py00851c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Readily available poly(sulfur ylides) are described as a new class of zwitterionic polymers that show distinct solution and thermal behavior.
Collapse
Affiliation(s)
- Georgia Poulladofonou
- Systems Chemistry Department, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| | - Kevin Neumann
- Systems Chemistry Department, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| |
Collapse
|