1
|
Li M, Shi J, Zhang Y, Cui S, Zhang L, Shen Q. ECL cytosensor for sensitive and label-free detection of circulating tumor cells based on hierarchical flower-like gold microstructures. Anal Chim Acta 2024; 1303:342505. [PMID: 38609273 DOI: 10.1016/j.aca.2024.342505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
The development of sensitive and efficient cell sensing strategies to detect circulating tumor cells (CTCs) in peripheral blood is crucial for the early diagnosis and prognostic assessment of cancer clinical treatment. Herein, an array of hierarchical flower-like gold microstructures (HFGMs) with anisotropic nanotips was synthesized by a simple electrodeposition method and used as a capture substrate to construct an ECL cytosensor based on the specific recognition of target cells by aptamers. The complex topography of the HFGMs array not only catalyzed the enhancement of ECL signals, but also induced the cells to generate more filopodia, improving the capture efficiency and shortening the capture time. The effect of topographic roughness on cell growth and adhesion propensity was also investigated, while the cell capture efficiency was proposed to be an important indicator affecting the accuracy of the ECL cytosensor. In addition, the capture of cells on the electrode surface increased the steric hindrance, which caused ECL signal changes in the Ru(bpy)32+ and TPrA system, realizing the quantitative detection of MCF-7 cells. The detection range of the sensor was from 102 to 106 cells mL-1 and the detection limit was 18 cells mL-1. The proposed detection method avoids the process of separation, labeling and counting, which has great potential for sensitive detection in clinical applications.
Collapse
Affiliation(s)
- Meixing Li
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| | - Jiawei Shi
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Yuhang Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Shuaihui Cui
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Lei Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Qingming Shen
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
2
|
Zhao L, Fang Y, Chen X, Meng Y, Wang F, Li C. Carbon dot-based fluorescent probe for early diagnosis of pheochromocytoma through identification of circulating tumor cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123921. [PMID: 38271847 DOI: 10.1016/j.saa.2024.123921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/19/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Pheochromocytoma (PCC), as a rare neuroendocrine tumor, is often missed or misdiagnosed because of its atypical clinical manifestations. To realize the early accurate diagnosis of PCC, we have selected circulating tumor cells (CTCs) with more complete biological information as biomarkers and developed a simple and novel fluorescence cytosensor. Octreotide-2,2',2'',2'''- (1,4,7,10 -tetraazacyclododecane-1,4,7,10-tetrayl) tetraacetic acid (DOTA) modified magnetic Fe3O4 and signal amplification CDs@SiO2 nanospheres are prepared to capture and detect PCC-CTCs from peripheral blood via binding to the somatostatin receptor SSTR2 overexpressed on the surface of PCC cells. During the detection process, the target cells were separated and enriched by magnetic capture probes (Fe3O4-DOTA), and then signal probes (CDs@SiO2-DOTA) could also specifically bound to target cells to form the sandwich-like structure for fluorescence signal output. The proposed fluorescence cytosensor has revealed good sensitivity and selectivity for quantitative analysis of PCC-CTCs in the concentration of 5-1000 cells mL-1 with a LOD of 2 cells mL-1. More importantly, designed fluorescence cytosensor has shown good reliability and stability in complex serum samples. This strategy provides a new way for detection of PCC-CTCs.
Collapse
Affiliation(s)
- Liping Zhao
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, Jiangsu, PR China
| | - Yiwei Fang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, Jiangsu, PR China
| | - Xinhe Chen
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, Jiangsu, PR China
| | - Yang Meng
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, Jiangsu, PR China
| | - Fei Wang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, Jiangsu, PR China; Cell and Biomolecule Recognition Research Center, School of Science, China Pharmaceutical University, Nanjing 211198, Jiangsu, PR China.
| | - Caolong Li
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, Jiangsu, PR China; Cell and Biomolecule Recognition Research Center, School of Science, China Pharmaceutical University, Nanjing 211198, Jiangsu, PR China.
| |
Collapse
|
3
|
Kim YJ, Rho WY, Park SM, Jun BH. Optical nanomaterial-based detection of biomarkers in liquid biopsy. J Hematol Oncol 2024; 17:10. [PMID: 38486294 PMCID: PMC10938695 DOI: 10.1186/s13045-024-01531-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/02/2024] [Indexed: 03/18/2024] Open
Abstract
Liquid biopsy, which is a minimally invasive procedure as an alternative to tissue biopsy, has been introduced as a new diagnostic/prognostic measure. By screening disease-related markers from the blood or other biofluids, it promises early diagnosis, timely prognostication, and effective treatment of the diseases. However, there will be a long way until its realization due to its conceptual and practical challenges. The biomarkers detected by liquid biopsy, such as circulating tumor cell (CTC) and circulating tumor DNA (ctDNA), are extraordinarily rare and often obscured by an abundance of normal cellular components, necessitating ultra-sensitive and accurate detection methods for the advancement of liquid biopsy techniques. Optical biosensors based on nanomaterials open an important opportunity in liquid biopsy because of their enhanced sensing performance with simple and practical properties. In this review article, we summarized recent innovations in optical nanomaterials to demonstrate the sensitive detection of protein, peptide, ctDNA, miRNA, exosome, and CTCs. Each study prepares the optical nanomaterials with a tailored design to enhance the sensing performance and to meet the requirements of each biomarker. The unique optical characteristics of metallic nanoparticles (NPs), quantum dots, upconversion NPs, silica NPs, polymeric NPs, and carbon nanomaterials are exploited for sensitive detection mechanisms. These recent advances in liquid biopsy using optical nanomaterials give us an opportunity to overcome challenging issues and provide a resource for understanding the unknown characteristics of the biomarkers as well as the mechanism of the disease.
Collapse
Affiliation(s)
- Young Jun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Won-Yeop Rho
- School of International Engineering and Science, Jeonbuk National University, Chonju, 54896, Republic of Korea
| | - Seung-Min Park
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore.
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
4
|
Jiang L, Lin X, Chen F, Qin X, Yan Y, Ren L, Yu H, Chang L, Wang Y. Current research status of tumor cell biomarker detection. MICROSYSTEMS & NANOENGINEERING 2023; 9:123. [PMID: 37811123 PMCID: PMC10556054 DOI: 10.1038/s41378-023-00581-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/26/2023] [Accepted: 07/23/2023] [Indexed: 10/10/2023]
Abstract
With the annual increases in the morbidity and mortality rates of tumors, the use of biomarkers for early diagnosis and real-time monitoring of tumor cells is of great importance. Biomarkers used for tumor cell detection in body fluids include circulating tumor cells, nucleic acids, protein markers, and extracellular vesicles. Among them, circulating tumor cells, circulating tumor DNA, and exosomes have high potential for the prediction, diagnosis, and prognosis of tumor diseases due to the large amount of valuable information on tumor characteristics and evolution; in addition, in situ monitoring of telomerase and miRNA in living cells has been the topic of extensive research to understand tumor development in real time. Various techniques, such as enzyme-linked immunosorbent assays, immunoblotting, and mass spectrometry, have been widely used for the detection of these markers. Among them, the detection of tumor cell markers in body fluids based on electrochemical biosensors and fluorescence signal analysis is highly preferred because of its high sensitivity, rapid detection and portable operation. Herein, we summarize recent research progress in the detection of tumor cell biomarkers in body fluids using electrochemical and fluorescence biosensors, outline the current research status of in situ fluorescence monitoring and the analysis of tumor markers in living cells, and discuss the technical challenges for their practical clinical application to provide a reference for the development of new tumor marker detection methods.
Collapse
Affiliation(s)
- Liying Jiang
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Xinyi Lin
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Fenghua Chen
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Xiaoyun Qin
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Yanxia Yan
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Linjiao Ren
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Hongyu Yu
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Lingqian Chang
- key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083 China
| | - Yang Wang
- key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083 China
- School of Engineering Medicine, Beihang University, Beijing, 100083 China
| |
Collapse
|
5
|
Sanati A, Esmaeili Y, Khavani M, Bidram E, Rahimi A, Dabiri A, Rafienia M, Arbab Jolfaie N, Mofrad MRK, Haghjooy Javanmard S, Shariati L, Zarrabi A. Smartphone-assisted lab-in-a-tube device using gold nanocluster-based aptasensor for detection of MUC1-overexpressed tumor cells. Anal Chim Acta 2023; 1252:341017. [PMID: 36935143 DOI: 10.1016/j.aca.2023.341017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023]
Abstract
Developing smartphone technology for point-of-care diagnosis is one of the current favorable trends in the field of biosensors. In fact, using smartphones can provide better accessibility and facility for rapid diagnosis of diseases. On the other hand, the detection of circulating tumor cells (CTCs) is one of the recent methods for the early diagnosis of cancer. Here, a new smartphone-assisted lab-in-a-tube device is introduced for the detection of Mucin 1 (MUC1) overexpressed tumor-derived cell lines using gold nanoclusters (GNCs)-based aptasensor. Accordingly, commercial polyurethane (PU) foam was first coated with graphene oxide (GO) to increase its surface area (8.45-fold), and improve its wettability. The surface of the resulting three-dimensional PU-GO (3DPU-GO) platform was then modified by MUC1 aptamer-GNCs to provide the required sensitivity and specificity through a turn "on/off" detection system. The proposed biosensor was first optimized with a spectrophotometer method. Afterward, findings were evaluated based on the red color intensity of the lab-in-a-tube system; and indicated the high ability of the biosensor for detection of MUC1-overexpressed tumor cell lines in the range of 250-20,000 cells mL-1 with a limit of detection of 221 cells mL-1. In addition, the developed biosensor showed a decent selectivity against positive-control cell lines (MCF-7, and HT-29) in comparison to negative-control cell lines (HEK293, and L929). Notably, the results represented good accordance with reference methods including spectroscopy devices. Ultimately, the results of this work bring a new perspective to the field of point-of-care detection and can be considered in future biosensors.
Collapse
Affiliation(s)
- Alireza Sanati
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yasaman Esmaeili
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Khavani
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Elham Bidram
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Biomaterials, Nanotechnology, And Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azadeh Rahimi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arezou Dabiri
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Rafienia
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nafise Arbab Jolfaie
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Laleh Shariati
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Biomaterials, Nanotechnology, And Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey.
| |
Collapse
|
6
|
Vajhadin F, Mazloum-Ardakani M, Hemati M, Moshtaghioun SM. Facile preparation of a cost-effective platform based on ZnFe 2O 4 nanomaterials for electrochemical cell detection. Sci Rep 2023; 13:4962. [PMID: 36973342 PMCID: PMC10042879 DOI: 10.1038/s41598-023-31377-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
Circulating tumor cells (CTCs) are important tumor markers that indicate early metastasis, tumor recurrence, and treatment efficacy. To identify and separate these cells from the blood, new nanomaterials need to be developed. The present study explored the potential application of ZnFe2O4 magnetic nanoparticles in capturing CTCs with cell surface markers. Folic acid was coupled to L-cysteine-capped ZnFe2O4 nanoparticles (ZC) to provide binding sites on ZnFe2O4 nanoparticles for the recognition of folate bioreceptors, which are highly expressed in MCF-7 breast cancer cells. The cytotoxicity of ZnFe2O4 nanoparticles and ZC against MCF-7 was analyzed with the MTT assay. After 24 h of incubation, there were IC50 values of 702.6 and 805.5 µg/mL for ZnFe2O4 and ZC, respectively. However, after 48 h of incubation, IC50 values of ZnFe2O4 and ZC were reduced to 267.3 and 389.7 µg/mL, respectively. The cell quantification was conducted with magnetically collected cells placed on a glassy carbon electrode, and the differential pulse voltammetry (DPV) responses were analyzed. This cost-effective ZnFe2O4-based biosensing platform allowed cancer cell detection with a limit of detection of 3 cells/mL, ranging from 25 to 104 cells/mL. In future, these functionalized zinc ferrites may be used in electrochemical cell detection and targeted cancer therapy.
Collapse
Affiliation(s)
- Fereshteh Vajhadin
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, 8915818411, Iran
| | | | - Mahdie Hemati
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | |
Collapse
|
7
|
Hierarchal polyaniline-folic acid nanostructures act as a platform for electrochemical detection of tumor cells. Anal Biochem 2023; 662:114914. [PMID: 36272452 DOI: 10.1016/j.ab.2022.114914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 02/04/2023]
Abstract
The fabrication of electrochemical sensing platforms for cancer monitoring by quantifying circulating tumor cells (CTCs) in blood holds promise for providing a low-cost, rapid, feasible, and safe approach for cancer diagnosis. Here, we isolate cancer cells using CoFe2O4 nanoparticles functionalized with folic acid and chitosan as an inexpensive magnetic nanoprobe. This electrochemical cytosensing platform was realized using polyaniline-folic acid nanohybrids with a three-dimensional hierarchical structure that presents abundant affinity sites toward overexpressed folate bioreceptors on cancer cells, in addition to retaining satisfied conductivity. Furthermore, 3D modeling and simulation of the polyaniline-folic acid structures were conducted to investigate the stable complex between aniline and folate, and the interaction between the polyaniline-folate complex and folate receptor alpha1, a bioreceptor on MCF-7 was revealed for the first time. The limit of detection was calculated to be 4 cells mL-1 with a linear range from 50 to 106 cells mL-1.
Collapse
|
8
|
Hu X, Tan W, Cheng S, Xian Y, Zhang C. Nucleic acid and nanomaterial-assisted signal-amplified strategies in fluorescent analysis of circulating tumor cells and small extracellular vesicles. Anal Bioanal Chem 2023:10.1007/s00216-022-04509-2. [PMID: 36599923 DOI: 10.1007/s00216-022-04509-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023]
Abstract
As two main types of liquid biopsy markers, both circulating tumor cells (CTCs) and small extracellular vesicles (sEVs) play important roles in the diagnosis and prognosis of cancers. CTCs are malignant cells that detach from the original tumor tissue and enter the circulation of body fluids. sEVs are nanoscale vesicles secreted by normal cells or pathological cells. However, CTCs and sEVs in body fluids are scarce, leading to great difficulties in the accurate analysis of related diseases. For the sensitive detection of CTCs and sEVs in body fluids, various types of nucleic acid and nanomaterial-assisted signal amplification strategies have been developed. In this review, we summarize the recent advances in fluorescent detection of CTCs and sEVs in liquid biopsy based on nucleic acid and nanomaterial-assisted signal amplification strategies. We also discuss their advantages, challenges, and future prospects.
Collapse
Affiliation(s)
- Xinyu Hu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Wenqiao Tan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Shasha Cheng
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Yuezhong Xian
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Cuiling Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|