1
|
Pan J, Zeng Q, Peng K, Zhou Y, Shu Z. Review of Rewarming Methods for Cryopreservation. Biopreserv Biobank 2024; 22:304-311. [PMID: 37751240 DOI: 10.1089/bio.2023.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
Cryopreservation is the most effective technology for the long-term preservation of biological materials, including cells, tissues, and even organs in the future. The process of cooling and rewarming is essential to the successful preservation of biological materials. One of the critical problems in the development of cryopreservation is the optimization of effective rewarming technologies. This article reviewed rewarming methods, including traditional boundary rewarming commonly used for small-volume biological materials and other advanced techniques that could be potentially feasible for organ preservation in the future. The review focused on various rewarming technique principles, typical applications, and their possible limitations for cryopreservation of biological materials. This article introduced nanowarming methods in the progressing optimization and the possible difficulties. The trends of novel rewarming methods were discussed, and suggestions were given for future development.
Collapse
Affiliation(s)
- Jiaji Pan
- Department of Mechanical Engineering, College of Engineering and Design, Hunan Normal University, Changsha, China
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qijin Zeng
- Department of Mechanical Engineering, College of Engineering and Design, Hunan Normal University, Changsha, China
| | - Ke Peng
- Department of Mechanical Engineering, College of Engineering and Design, Hunan Normal University, Changsha, China
| | - Yulin Zhou
- Shuda College, Hunan Normal University, Changsha, China
| | - Zhiquan Shu
- School of Engineering and Technology, University of Washington, Tacoma, Washington, USA
| |
Collapse
|
2
|
Ye Z, Tai Y, Han Z, Liu S, Etheridge ML, Pasek-Allen JL, Shastry C, Liu Y, Li Z, Chen C, Wang Z, Bischof JC, Nam J, Yin Y. Engineering Magnetic Nanoclusters for Highly Efficient Heating in Radio-Frequency Nanowarming. NANO LETTERS 2024; 24:4588-4594. [PMID: 38587406 DOI: 10.1021/acs.nanolett.4c00721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Effective thawing of cryopreserved samples requires rapid and uniform heating. This is achievable through nanowarming, an approach that heats magnetic nanoparticles by using alternating magnetic fields. Here we demonstrate the synthesis and surface modification of magnetic nanoclusters for efficient nanowarming. Magnetite (Fe3O4) nanoclusters with an optimal diameter of 58 nm exhibit a high specific absorption rate of 1499 W/g Fe under an alternating magnetic field at 43 kA/m and 413 kHz, more than twice that of commercial iron oxide cores used in prior nanowarming studies. Surface modification with a permeable resorcinol-formaldehyde resin (RFR) polymer layer significantly enhances their colloidal stability in complex cryoprotective solutions, while maintaining their excellent heating capacity. The Fe3O4@RFR nanoparticles achieved a high average heating rate of 175 °C/min in cryopreserved samples at a concentration of 10 mg Fe/mL and were successfully applied in nanowarming porcine iliac arteries, highlighting their potential for enhancing the efficacy of cryopreservation.
Collapse
Affiliation(s)
- Zuyang Ye
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Youyi Tai
- Department of Bioengineering, University of California, Riverside, California 92521, United States
| | - Zonghu Han
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Sangmo Liu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Michael L Etheridge
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jacqueline L Pasek-Allen
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Chaitanya Shastry
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yun Liu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Zhiwei Li
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Chen Chen
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Zhongxiang Wang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - John C Bischof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jin Nam
- Department of Bioengineering, University of California, Riverside, California 92521, United States
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
3
|
Kantesaria S, Tang X, Suddarth S, Pasek-Allen J, Namsrai BE, Goswitz A, Hintz M, Bischof J, Garwood M. A Low-Cost, Tabletop LOD-EPR System for Nondestructive Quantification of Iron Oxide Nanoparticles in Tissues. ACS Sens 2024; 9:262-271. [PMID: 38190731 DOI: 10.1021/acssensors.3c01898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Iron oxide nanoparticles (IONPs) have wide utility in applications from drug delivery to the rewarming of cryopreserved tissues. Due to the complex behavior of IONPs (e.g., uneven particle distribution and aggregation), further developments and clinical translation can be accelerated by having access to a noninvasive method for tissue IONP quantification. Currently, there is no low-cost method to nondestructively track IONPs in tissues across a wide range of concentrations. This work describes the performance of a low-cost, tabletop, longitudinally detected electron paramagnetic resonance (LOD-EPR) system to address this issue in the field of cryopreservation, which utilizes IONPs for rewarming of rat kidneys. A low-cost LOD-EPR system is realized via simultaneous transmit and receive using MHz continuous-wave transverse excitation with kHz modulation, which is longitudinally detected at the modulation frequency to provide both geometric and frequency isolation. The accuracy of LOD-EPR for IONP quantification is compared with NMR relaxometry. Solution measurements show excellent linearity (R2 > 0.99) versus Fe concentration for both measurements on EMG308 (a commercial nanoparticle), silica-coated EMG308, and PEG-coated EMG308 in water. The LOD-EPR signal intensity and NMR longitudinal relaxation rate constant (R1) of water are affected by particle coating, solution viscosity, and particle aggregation. R1 remains linear but with a reduced slope when in cryoprotective agent (CPA) solution, whereas the LOD-EPR signal is relatively insensitive to this. R1 does not correlate well with Fe concentration in rat kidney sections (R2 = 0.3487), while LOD-EPR does (R2 = 0.8276), with a linear regression closely matching that observed in solution and CPA.
Collapse
Affiliation(s)
- Saurin Kantesaria
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Xueyan Tang
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Steven Suddarth
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jacqueline Pasek-Allen
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bat-Erdene Namsrai
- Department of Surgery, University of Minnesota, 420 Delaware Street SE, Minneapolis, Minnesota 55455, United States
| | - Arjun Goswitz
- Department of Mechanical Engineering, University of Minnesota, 111 Church St. SE, Minneapolis, Minnesota 55455, United States
| | - Mikaela Hintz
- Department of Mechanical Engineering, University of Minnesota, 111 Church St. SE, Minneapolis, Minnesota 55455, United States
| | - John Bischof
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Mechanical Engineering, University of Minnesota, 111 Church St. SE, Minneapolis, Minnesota 55455, United States
| | - Michael Garwood
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
4
|
Pasek-Allen J, Wilharm RK, Bischof JC, Pierre VC. NMR Characterization of Polyethylene Glycol Conjugates for Nanoparticle Functionalization. ACS OMEGA 2023; 8:4331-4336. [PMID: 36743059 PMCID: PMC9893458 DOI: 10.1021/acsomega.2c07669] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
The molecular weight, purity, and functionalization of polyethylene glycols are often characterized by 1H NMR spectroscopy. Oft-forgotten, the typical 1H NMR pulse sequence is not 13C decoupled. Hence, for large polymers, the 13C coupled 1H peaks arising from the repeating units have integrations comparable to that of the 1H of the terminal groups. Ignoring this coupling leads to erroneous assignments. Once correctly assigned, these 13C coupled 1H peaks can be used to determine both the molecular weight of the polymer and the efficacy of conjugation of a terminal moiety more accurately than the uncoupled 1H of the repeating unit.
Collapse
Affiliation(s)
- Jacqueline
L. Pasek-Allen
- Department
of Biomedical Engineering, University of
Minnesota, Twin-Cities, Minneapolis, Minnesota55455, United States
| | - Randall K. Wilharm
- Department
of Chemistry, University of Minnesota, Twin-Cities, Minneapolis, Minnesota55455, United States
| | - John C. Bischof
- Department
of Biomedical Engineering, University of
Minnesota, Twin-Cities, Minneapolis, Minnesota55455, United States
- Department
of Mechanical Engineering, University of
Minnesota, Twin-Cities, Minneapolis, Minnesota55455, United States
| | - Valérie C. Pierre
- Department
of Chemistry, University of Minnesota, Twin-Cities, Minneapolis, Minnesota55455, United States
| |
Collapse
|
5
|
Pasek-Allen JL, Kantesaria S, Gangwar L, Shao Q, Gao Z, Idiyatullin D, Han Z, Etheridge ML, Garwood M, Jagadeesan BD, Bischof JC. Injectable and Repeatable Inductive Heating of Iron Oxide Nanoparticle-Enhanced "PHIL" Embolic toward Tumor Treatment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41659-41670. [PMID: 36070361 DOI: 10.1021/acsami.2c05941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Deep-seated tumors of the liver, brain, and other organ systems often recur after initial surgical, chemotherapeutic, radiation, or focal treatments. Repeating these treatments is often invasive and traumatic. We propose an iron oxide nanoparticle (IONP)-enhanced precipitating hydrophobic injectable liquid (PHIL, MicroVention inc.) embolic as a localized dual treatment implant for nutrient deprivation and multiple repeatable thermal ablation. Following a single injection, multiple thermal treatments can be repeated as needed, based on monitoring of tumor growth/recurrence. Herein we show the ability to create an injectable stable PHIL-IONP solution, monitor deposition of the PHIL-IONP precipitate dispersion by μCT, and gauge the IONP distribution within the embolic by magnetic resonance imaging. Once precipitated, the implant could be heated to reach therapeutic temperatures >8 °C for thermal ablation (clinical temperature of ∼45 °C), in a model disk and a 3D tumor bed model. Heat output was not affected by physiological conditions, multiple heating sessions, or heating at intervals over a 1 month duration. Further, in ex vivo mice hind-limb tumors, we could noninvasively heat the embolic to an "ablative" temperature elevation of 17 °C (clinically 54 °C) in the first 5 min and maintain the temperature rise over +8 °C (clinically a temperature of 45 °C) for longer than 15 min.
Collapse
Affiliation(s)
- Jacqueline L Pasek-Allen
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Saurin Kantesaria
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Lakshya Gangwar
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Qi Shao
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Zhe Gao
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Djaudat Idiyatullin
- Department of Radiology, Neurology and Neurosurgery, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Zonghu Han
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Michael L Etheridge
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Michael Garwood
- Department of Radiology, Neurology and Neurosurgery, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bharathi D Jagadeesan
- Department of Radiology, Neurology and Neurosurgery, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - John C Bischof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Radiology, Neurology and Neurosurgery, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|