1
|
Rajsiglova L, Babic M, Krausova K, Lukac P, Kalkusova K, Taborska P, Sojka L, Bartunkova J, Stakheev D, Vannucci L, Smrz D. Immunogenic properties of nickel-doped maghemite nanoparticles and the implication for cancer immunotherapy. J Immunotoxicol 2024; 21:2416988. [PMID: 39484726 DOI: 10.1080/1547691x.2024.2416988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/29/2024] [Accepted: 10/10/2024] [Indexed: 11/03/2024] Open
Abstract
Nanoparticles are commonly used in diagnostics and therapy. They are also increasingly being implemented in cancer immunotherapy because of their ability to deliver drugs and modulate the immune system. However, the effect of nanoparticles on immune cells involved in the anti-tumor immune response is not well understood. The study reported here showed that nickel-doped maghemite nanoparticles (FN NP) are differentially cytotoxic to cultured mouse and human cancer cell lines, causing their death without negatively impacting the subsequent anticancer immune response. It also found that FN NP induced cell death in the mouse colorectal cancer cell line CT26 and human prostate cancer cell line PC-3, but not in the human prostate cancer cell line LNCaP. The induced cancer cell death did not affect the phenotype and responsivity of the isolated mouse peritoneal macrophages, or ex vivo-generated mouse bone marrow-derived, or human monocyte-derived dendritic cells. Additionally, the induced cancer cell death did not prevent the ex vivo-generated mouse or human dendritic cells from stimulating lymphocytes and enriching cell cultures with cancer cell-reactive T-cells. In conclusion, this study shows that FN NP could be a valuable platform for targeting cancer cells without causing immunosuppressive effects on the subsequent anticancer immune response.
Collapse
Affiliation(s)
- Lenka Rajsiglova
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, v.v.i, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Michal Babic
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Katerina Krausova
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, v.v.i, Prague, Czech Republic
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Pavol Lukac
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, v.v.i, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Katerina Kalkusova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Pavla Taborska
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Ludek Sojka
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
- Department of Technical Operations, SOTIO, a.s., Prague, Czech Republic
| | - Jirina Bartunkova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Dmitry Stakheev
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, v.v.i, Prague, Czech Republic
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Luca Vannucci
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, v.v.i, Prague, Czech Republic
| | - Daniel Smrz
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, v.v.i, Prague, Czech Republic
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
2
|
Herraiz A, Morales MP, Martínez-Parra L, Arias-Ramos N, López-Larrubia P, Gutiérrez L, Mejías J, Díaz-Ufano C, Ruiz-Cabello J, Herranz F. Periodic table screening for enhanced positive contrast in MRI and in vivo uptake in glioblastoma. Chem Sci 2024; 15:8578-8590. [PMID: 38846405 PMCID: PMC11151829 DOI: 10.1039/d4sc01069h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/08/2024] [Indexed: 06/09/2024] Open
Abstract
The quest for nanomaterial-based imaging probes that can provide positive contrast in MRI is fueled by the necessity of developing novel diagnostic applications with potential for clinical translation that current gold standard probes cannot provide. Although interest in nanomaterials for positive contrast has increased in recent years, their study is less developed than that of traditional negative contrast probes in MRI. In our search for new magnetic materials with enhanced features as positive contrast probes for MRI, we decided to explore the chemical space to comprehensively analyze the effects of different metals on the performance of iron oxide nanomaterials already able to provide positive contrast in MRI. To this end, we synthesized 30 different iron oxide-based nanomaterials. Thorough characterization was performed, including multivariate analysis, to study the effect of different variables on their relaxometric properties. Based on these results, we identified the best combination of metals for in vivo imaging and tested them in different experiments. First, we tested its performance on magnetic resonance angiography using a concentration ten times lower than that clinically approved for Gd. Finally, we studied the capability of these nanomaterials to cross the affected blood-brain barrier in a glioblastoma model. The results showed that the selected nanomaterials provided excellent positive contrast at large magnetic field and were able to accumulate at the tumor site, highlighting the affected tissue.
Collapse
Affiliation(s)
- Aitor Herraiz
- Grupo de Nanomedicina e Imagen Molecular, Instituto de Química Médica (IQM/CSIC) Juan de la Cierva 3 28006 Madrid Spain
| | - M Puerto Morales
- Departamento de Nanociencia y Nanotecnología, Instituto de Ciencia de Materiales de Madrid, CSIC Sor Juana Inés de la Cruz 3. Cantoblanco 28049 Madrid Spain
| | - Lydia Martínez-Parra
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA, ) Paseo de Miramon 182 20014 Donostia San Sebastián Spain
- Ikerbasque, Basque Foundation for Science Plaza Euskadi 5 4800 Bilbao Spain
- Molecular Biology and Biochemistry Department, Universidad del País Vasco (UPV/EHU) Barrio Sarriena s/n 48940 Leioa Spain
| | - Nuria Arias-Ramos
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAM Madrid Spain
| | - Pilar López-Larrubia
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAM Madrid Spain
| | - Lucía Gutiérrez
- Departamento de Química Analítica, Instituto de Nanociencia y Materiales de Aragón. Universidad de Zaragoza y CIBERBBN Mariano Esquillor s/n 50018 Zaragoza Spain
| | - Jesús Mejías
- Grupo de Nanomedicina e Imagen Molecular, Instituto de Química Médica (IQM/CSIC) Juan de la Cierva 3 28006 Madrid Spain
| | - Carlos Díaz-Ufano
- Departamento de Nanociencia y Nanotecnología, Instituto de Ciencia de Materiales de Madrid, CSIC Sor Juana Inés de la Cruz 3. Cantoblanco 28049 Madrid Spain
| | - Jesús Ruiz-Cabello
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA, ) Paseo de Miramon 182 20014 Donostia San Sebastián Spain
- Ikerbasque, Basque Foundation for Science Plaza Euskadi 5 4800 Bilbao Spain
- CIBER Enfermedades Respiratorias (CIBERES) Melchor Fernández-Almagro 3 28029 Madrid Spain
- NMR and Imaging in Biomedicine Group, Department of Chemistry in Pharmaceutical Sciences, Pharmacy School, University Complutense Madrid 28040 Madrid Spain
| | - Fernando Herranz
- Grupo de Nanomedicina e Imagen Molecular, Instituto de Química Médica (IQM/CSIC) Juan de la Cierva 3 28006 Madrid Spain
- CIBER Enfermedades Respiratorias (CIBERES) Melchor Fernández-Almagro 3 28029 Madrid Spain
| |
Collapse
|
3
|
Wang S, Liang H, Yang Z, Wang Z, Yang B, Lu C. Direct large-scale synthesis of water-soluble and biocompatible upconversion nanoparticles for in vivo imaging. RSC Adv 2024; 14:17350-17354. [PMID: 38813132 PMCID: PMC11134336 DOI: 10.1039/d4ra03242j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
Deep tissues can be optically imaged using near-infrared windows without radiation hazard. This work proposes a straightforward one-pot method for directly synthesizing water-soluble and biocompatible upconversion nanoparticles on a large scale for in vivo imaging. Safety assessment, coupled with luminescence imaging in mice, demonstrates the excellent stability and promising biological applications of the upconversion nanoparticles.
Collapse
Affiliation(s)
- Siqi Wang
- Department of Chemistry, School of Light Industry Science and Engineering, Beijing Technology and Business University Beijing 100048 China
| | - Haiyan Liang
- Department of Chemistry, School of Light Industry Science and Engineering, Beijing Technology and Business University Beijing 100048 China
| | - Zihao Yang
- Department of Chemistry, School of Light Industry Science and Engineering, Beijing Technology and Business University Beijing 100048 China
| | - Zhijie Wang
- University of Chinese Academy of Sciences, CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS) Beijing 100049 China
| | - Biao Yang
- Department of Materials Science and Engineering, School of Light Industry Science and Engineering, Beijing Technology and Business University Beijing 100048 China
| | - Chichong Lu
- Department of Chemistry, School of Light Industry Science and Engineering, Beijing Technology and Business University Beijing 100048 China
| |
Collapse
|
4
|
Yang G, Xia J, Dai X, Zhao H, Gao W, Ding W, Tao X, Zhu L. A Targeted Multi-Crystalline Manganese Oxide as a Tumor-Selective Nano-Sized MRI Contrast Agent for Early and Accurate Diagnosis of Tumors. Int J Nanomedicine 2024; 19:527-540. [PMID: 38260241 PMCID: PMC10802178 DOI: 10.2147/ijn.s444061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Introduction Magnetic resonance imaging (MRI) is an important tool for the accurate diagnosis of malignant tumors in clinical settings. However, the lack of tumor-specific MRI contrast agents limits diagnostic accuracy. Methods Herein, we developed αv integrin receptor-targeting multi-crystalline manganese oxide (MCMO) as a novel MRI contrast agent for accurate diagnosis of tumors by coupling iRGD cyclopeptide PEGylation polymer onto the surface of MCMO (iRGD-pMCMO). Results The MCMO consisted of numerous small crystals and exhibited an oval structure of 200 nm in size. The iRGD-pMCMO actively recognizes tumor cells and effectively accumulates at the tumor site, consequently releasing abundant Mn2+ ions in a weakly acidic and high-GSH-expressing tumor microenvironment. Subsequently, Mn2+ ions interact with cellular GSH to form Mn-GSH chelates, enabling efficient T1-weighted MR contrast imaging. In vivo experiments indicated that iRGD-pMCMO significantly improved T1-weighted images, achieving an accurate diagnosis of subcutaneous and orthotopic tumors. The results verified that the T1 contrast effect of iRGD-pMCMO was closely associated with the expression of GSH in tumor cells. Conclusion Altogether, the novel tumor-targeting, highly sensitive MRI contrast agent developed in this study can improve the accuracy of MRI for tumor diagnosis.
Collapse
Affiliation(s)
- Gongxin Yang
- Department of Radiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, People’s Republic of China
| | - Jikai Xia
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, 264100, People’s Republic of China
| | - Xiaoqing Dai
- Department of Radiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, People’s Republic of China
| | - Hongbo Zhao
- Department of Radiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, People’s Republic of China
| | - Weiqing Gao
- Department of Radiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, People’s Republic of China
| | - Weilong Ding
- Department of Radiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, People’s Republic of China
| | - Xiaofeng Tao
- Department of Radiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, People’s Republic of China
| | - Ling Zhu
- Department of Radiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, People’s Republic of China
| |
Collapse
|
5
|
Tasnim NT, Ferdous N, Rumon MMH, Shakil MS. The Promise of Metal-Doped Iron Oxide Nanoparticles as Antimicrobial Agent. ACS OMEGA 2024; 9:16-32. [PMID: 38222657 PMCID: PMC10785672 DOI: 10.1021/acsomega.3c06323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 01/16/2024]
Abstract
Antibiotic resistance (AMR) is one of the pressing global public health concerns and projections indicate a potential 10 million fatalities by the year 2050. The decreasing effectiveness of commercially available antibiotics due to the drug resistance phenomenon has spurred research efforts to develop potent and safe antimicrobial agents. Iron oxide nanoparticles (IONPs), especially when doped with metals, have emerged as a promising avenue for combating microbial infections. Like IONPs, the antimicrobial activities of doped-IONPs are also linked to their surface charge, size, and shape. Doping metals on nanoparticles can alter the size and magnetic properties by reducing the energy band gap and combining electronic charges with spins. Furthermore, smaller metal-doped nanoparticles tend to exhibit enhanced antimicrobial activity due to their higher surface-to-volume ratio, facilitating greater interaction with bacterial cells. Moreover, metal doping can also lead to increased charge density in magnetic nanoparticles and thereby elevate reactive oxygen species (ROS) generation. These ROS play a vital role to disrupt bacterial cell membrane, proteins, or nucleic acids. In this review, we compared the antimicrobial activities of different doped-IONPs, elucidated their mechanism(s), and put forth opinions for improved biocompatibility.
Collapse
Affiliation(s)
- Nazifa Tabassum Tasnim
- Department of Mathematics and Natural Sciences, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Nushrat Ferdous
- Department of Mathematics and Natural Sciences, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Md Mahamudul Hasan Rumon
- Department of Mathematics and Natural Sciences, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Md Salman Shakil
- Department of Mathematics and Natural Sciences, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| |
Collapse
|
6
|
Lu C, Chai Y, Xu X, Wang Z, Bao Y, Fei Z. Large-scale in situ self-assembly and doping engineering of zinc ferrite nanoclusters for high performance bioimaging. Colloids Surf B Biointerfaces 2023; 229:113473. [PMID: 37517338 DOI: 10.1016/j.colsurfb.2023.113473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/16/2023] [Accepted: 07/22/2023] [Indexed: 08/01/2023]
Abstract
Iron oxide nanomaterials has good biocompatibility and safety, and has been used as contrast agents for magnetic resonance imaging (MRI). However, its clinical usefulness is hampered by its difficult preparation on large scale, its rapid clearance in vivo and low target tissue enrichment efficiency. Here, we report the synthesis of water-soluble, biocompatible, superparamagnetic non-stoichiometric zinc ferrite nanoclusters (nZFNCs) of approximately 50 g in a single batch using a one-pot synthesis technique. nZFNCs is a secondary cluster structure with a size of about 40 nm composed of zinc-doped iron oxide nanoparticles with a size of about 6 nm. The surface of nZFNCS is endowed with a large number of carboxyl groups as active sites. By simply controlling the synthesis process and adjusting the proportion of metal precursors, the amount of zinc doping can be controlled, while maintaining the same size to ensure similar pharmacokinetics. Compared with undoped, the magnetic responsiveness and relaxation efficiency of nZFNCs are significantly improved, and the transverse relaxation efficiency (r2) can reach 425.5 mM-1 s-1 (doping amount x = 0.25), which is 7 times higher than that of commercial Resovist and 10 times higher than that of Feridex. In vivo imaging results also further confirmed the excellent contrast enhancement performance of the nanoclusters, which can achieve high contrast for more than 2 h in the liver. The advantage of this platform over comparable systems is that the contrast enhancement features are derived from simple techniques that do not require complex physical and chemical methods.
Collapse
Affiliation(s)
- Chichong Lu
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Yuyun Chai
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Xue Xu
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Zhijie Wang
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yingjie Bao
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Zihan Fei
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| |
Collapse
|
7
|
Sri Varalakshmi G, Pawar C, Selvam R, Gem Pearl W, Manikantan V, Sumohan Pillai A, Alexander A, Rajendra Prasad N, Enoch IVMV, Dhanaraj P. Nickel sulfide and dysprosium-doped nickel sulfide nanoparticles: Dysprosium-induced variation in properties, in vitro chemo-photothermal behavior, and antibacterial activity. Int J Pharm 2023; 643:123282. [PMID: 37524253 DOI: 10.1016/j.ijpharm.2023.123282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Newer materials for utilization in multi-directional therapeutic actions are investigated, considering delicate design principles involving size and shape control, surface modification, and controllable drug loading and release. Multi-faceted properties are imparted to the engineered nanoparticles, like magnetism, near-infrared absorption, photothermal efficiency, and suitable size and shape. This report presents nickel sulfide and dysprosium-doped nickel sulfide nanoparticles with poly-β-cyclodextrin polymer coating. The nanoparticles belong to the orthorhombic crystal systems, as indicated by X-ray diffraction studies. The size and shape of the nanoparticles are investigated using Transmission Electron Microscope (TEM) and a particle-size analyzer. The particles show soft ferromagnetic characteristics with definite and moderate saturation magnetization values. The nickel sulfide nanoparticles' in vitro anticancer and antibacterial activities are investigated in free and 5-fluorouracil/penicillin benzathine-loaded forms. The 5-fluorouracil-encapsulation efficiency of the nanoparticles is around 87%, whereas it is above 92% in the case of penicillin benzathine. Both drugs are released slowly in a controlled fashion. The dysprosium-doped nickel sulfide nanoparticles show better anticancer activity, and the efficacy is more significant than the free drug. The nanoparticles are irradiated with a low-power 808 nm laser. The dysprosium-doped nickel sulfide nanoparticles attain a higher temperature on irradiation, i.e., above 59 °C. The photothermal conversion efficiency of this material is determined, and the significance of dysprosium doping is discussed. Contrarily, the undoped nickel sulfide nanoparticles show more significant antibacterial activity. This study presents a novel designed nanoparticle system and the exciting variation of properties on dysprosium doping in nickel sulfide nanoparticles.
Collapse
Affiliation(s)
- Govindaraj Sri Varalakshmi
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India
| | - Charansingh Pawar
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram 608002, Tamil Nadu, India
| | - Rajakar Selvam
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India
| | - Wrenit Gem Pearl
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India
| | - Varnitha Manikantan
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India
| | - Archana Sumohan Pillai
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India
| | - Aleyamma Alexander
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India
| | - N Rajendra Prasad
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram 608002, Tamil Nadu, India
| | - Israel V M V Enoch
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India.
| | - Premnath Dhanaraj
- Department of Biotechnology, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India.
| |
Collapse
|
8
|
Li J, Zhang W, Liu S, Yang F, Zhou Y, Cao L, Li Y, Guo Y, Qi X, Xu G, Peng J, Zhao Y. Preclinical Evaluation of a Protein-Based Nanoscale Contrast Agent for MR Angiography at an Ultralow Dose. Int J Nanomedicine 2023; 18:4431-4444. [PMID: 37555188 PMCID: PMC10404595 DOI: 10.2147/ijn.s416741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/19/2023] [Indexed: 08/10/2023] Open
Abstract
PURPOSE BSA-biomineralized Gd nanoparticles (Gd@BSA NPs) have been recognized as promising nanoscale MR contrast agents. The aim of this study was to carry out a preclinical evaluation of these NPs in a middle-sized animal model (rabbits). METHODS New Zealand white rabbits were treated intravenously with Gd@BSA NPs (0.02 mmol Gd/kg) via a clinically-used high-pressure injector, with commercial Gd-diethylene triamine pentaacetate (Gd-DTPA)-injected group as control. Then MR angiography was performed according to the standard clinical protocol with a 3.0-T MR scanner. The SNR and CNR of the main arteries and branches were monitored. Pharmacokinetics and bioclearance were continuously evaluated in blood, urine, and feces. Gd deposition in vital organs was measured by ICP‒MS. Weight monitoring, HE staining, and blood biochemical analysis were also performed to comprehensively estimate systemic toxicity. RESULTS The ultrasmall Gd@BSA NPs (<6 nm) exhibited high stability and T1 relaxivity. Compared to Gd-DTPA, Gd@BSA NPs demonstrated superior vascular system imaging performance at ultralow doses, especially of the cardiac artery and other main branches, and exhibited a significantly higher SNR and CNR. Notably, the Gd@BSA NPs showed a shorter half-life in blood, less retention in organs, and improved biocompatibility. CONCLUSION The preclinical evaluations here demonstrated that Gd@BSA NPs are promising and advantageous MR CA candidates that can be used at a low dose with excellent MR imaging performance, thus suggesting its further clinical trials and applications.
Collapse
Affiliation(s)
- Jianmin Li
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Wenyi Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Shuang Liu
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Fan Yang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Yupeng Zhou
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Lin Cao
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Yiming Li
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Yunfei Guo
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Xiang Qi
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Guoping Xu
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Jing Peng
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Yang Zhao
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| |
Collapse
|
9
|
Luo Q, Liu J, Ma Q, Xu S, Wang L. Single-Atom Gd Nanoprobes for Self-Confirmative MRI with Robust Stability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206821. [PMID: 36919250 DOI: 10.1002/smll.202206821] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/30/2023] [Indexed: 06/08/2023]
Abstract
Gadolinium (Gd)-based complexes are extensively utilized as contrast agents (CAs) in magnetic resonance imaging (MRI), yet, suffer from potential safety concerns and poor tumor targeting. Herein, as a mimic of Gd complex, single-atom Gd nanoprobes with r1 and r2 values of 34.2 and 80.1 mM-1 s-1 (far higher than that of commercial Gd CAs) at 3 T are constructed, which possessed T1 /T2 dual-mode MRI with excellent stability and good tumor targeting ability. Specifically, single-atom Gd is anchored on nitrogen-doped carbon matrix (Gd-Nx C) through spatial-confinement method, which is further subjected to controllable chemical etching to afford fully etched bowl-shape Gd-Nx C (feGd-Nx C) with hydrophilic properties and defined coordination structure, similar to commercial Gd complex. Such nanostructures not only maximized the Gd3+ site exposure, but also are suitable for self-confirmative diagnosis through one probe with dual-mode MRI. Moreover, the strong electron localization and interaction between Gd and N atoms afforded feGd-Nx C excellent kinetic inertness and thermal stability (no significant Gd3+ leaching is observed even incubated with Cu2+ and Zn2+ for two months), providing a creative design protocol for MRI CAs.
Collapse
Affiliation(s)
- Qing Luo
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Junhan Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qian Ma
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Suying Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
10
|
Shenoy RUK, Rama A, Govindan I, Naha A. The purview of doped nanoparticles: Insights into their biomedical applications. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|