1
|
Shamiya Y, Chakraborty A, Zahid AA, Bainbridge N, Guan J, Feng B, Pjontek D, Chakrabarti S, Paul A. Ascorbyl palmitate nanofiber-reinforced hydrogels for drug delivery in soft issues. COMMUNICATIONS MATERIALS 2024; 5:197. [PMID: 39309138 PMCID: PMC11415299 DOI: 10.1038/s43246-024-00641-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Nanofiber-based hydrogel delivery systems have recently shown great potential in biomedical applications, specifically due to their high surface-to-volume ratio of ultra-fine nanofibers and their ability to carry low solubility drugs. Herein, we introduce a visible light-triggered in situ-gelling drug vehicle (GAP Gel) composed of ascorbyl palmitate (AP) nanofibers and gelatin methacryloyl polymer. AP nanofibers form self-assembled structures through intermolecular interactions with a hydrophobic drug-loading core. We demonstrate that the hydrophilic periphery of AP nanofibers allows them to interact with other hydrophilic molecules via hydrogen bonds. The presence of AP nanofibers significantly enhances the viscoelasticity of GAP Gel in a concentration-dependent manner. Further, GAP Gel shows in vitro biocompatibility and sustained drug delivery efficacy when loaded with a hydrophobic antibiotic. Likewise, GAP Gel shows excellent in vivo biocompatibility when implanted in immunocompetent mice in various forms. Lastly, GAP Gels maintain cell viability when cultured in a 3D-environment over 7 days, establishing it as a promising and versatile hydrogel platform for the delivery of biotherapeutics.
Collapse
Affiliation(s)
- Yasmeen Shamiya
- Department of Chemistry, The University of Western Ontario, London, ON Canada
| | - Aishik Chakraborty
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON Canada
- Collaborative Specialization in Muscoskeletal Health Research and Bone and Joint Institute, The University of Western Ontario, London, ON Canada
| | - Alap Ali Zahid
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON Canada
| | - Nicholas Bainbridge
- Department of Chemistry, The University of Western Ontario, London, ON Canada
| | - Jingyuan Guan
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON Canada
| | - Biao Feng
- Department of Pathology and Laboratory Medicine, The University of Western Ontario, London, ON Canada
| | - Dominic Pjontek
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON Canada
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, The University of Western Ontario, London, ON Canada
| | - Arghya Paul
- Department of Chemistry, The University of Western Ontario, London, ON Canada
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON Canada
| |
Collapse
|
2
|
Yang Y, Li P, Feng H, Zeng R, Li S, Zhang Q. Macrocycle-Based Supramolecular Drug Delivery Systems: A Concise Review. Molecules 2024; 29:3828. [PMID: 39202907 PMCID: PMC11357536 DOI: 10.3390/molecules29163828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Efficient delivery of therapeutic agents to the lesion site or specific cells is an important way to achieve "toxicity reduction and efficacy enhancement". Macrocycles have always provided many novel ideas for drug or gene loading and delivery processes. Specifically, macrocycles represented by crown ethers, cyclodextrins, cucurbit[n]urils, calix[n]arenes, and pillar[n]arenes have unique properties, which are different cavity structures, good biocompatibility, and good stability. Benefited from these diverse properties, a variety of supramolecular drug delivery systems can be designed and constructed to effectively improve the physical and chemical properties of guest molecules as needed. This review provides an outlook on the current application status and main limitations of macrocycles in supramolecular drug delivery systems.
Collapse
Affiliation(s)
- Yanrui Yang
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Pengcheng Li
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Haibo Feng
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Rui Zeng
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Shanshan Li
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Qixiong Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Department of Pharmacy, Sichuan Provincial People’s Hospital Chuandong Hospital & Dazhou First People’s Hospital, Dazhou 635000, China
| |
Collapse
|
3
|
Ma R, Zhang Q, Wang Y, Xu Z. Structural engineering of mitochondria-targeted Au-Ag 2S photosensitizers for enhanced photodynamic and photothermal therapy. J Mater Chem B 2024; 12:7646-7658. [PMID: 39007565 DOI: 10.1039/d4tb00533c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Much effort has been devoted to designing diverse photosensitizers for efficient photodynamic therapy (PDT) and photothermal therapy (PTT) performance. However, the effect of PS morphology on the PDT and PTT performance needs to be further explored. In this work, a photosensitizer, Au-Ag2S nanoparticles functionalized with indocyanine green, caspase-3 recognition peptides, and mitochondria-targeting peptides (AICM NPs) with different morphologies, including core-shell, eccentric core-shell-I, eccentric core-shell-II, and Janus morphologies, were synthesized to enhance PDT and PTT performance. Among them, AICM Janus NPs with enhanced charge-transfer efficiency and photothermal conversion demonstrate superior PDT and PTT performance compared to those of other morphologies. In addition, AICM NPs exhibit satisfactory surface-enhanced Raman scattering performance for in situ SERS monitoring of caspase-3 during PDT and PTT processes. After PDT and PTT treatment with AICM Janus NPs, the damaged mitochondria released caspase-3. AICM Janus NPs achieved a superior apoptosis rate in tumor cells in vitro. Furthermore, AICM Janus NPs treat the tumors in vivo within only 10 days, which is half the time reported in other work. The AICM NPs demonstrated superior therapeutic safety both in vitro and in vivo. This study investigates the effects of morphology-property-performance of photosensitizers on the PDT and PTT performances, which opens a new pathway toward designing photosensitizers for efficient PDT and PTT.
Collapse
Affiliation(s)
- Ruofei Ma
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China.
| | - Qi Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China.
| | - Yue Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China.
| | - Zhangrun Xu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China.
| |
Collapse
|
4
|
Yang XZ, Zhu RX, Zhu RY, Liu H, Yu S, Xing LB. Superoxide radical generator based on triphenylamine-based supramolecular organic framework for green light photocatalysis. J Colloid Interface Sci 2024; 658:392-400. [PMID: 38113548 DOI: 10.1016/j.jcis.2023.12.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Supramolecular organic frameworks (SOFs) mostly require high-energy purple or blue light for photocatalytic reactions, while highly abundant and low-energy light systems have rarely been explored. Therefore, it is necessary to construct 2D SOFs for low-energy light-induced photocatalysis. This study describes the design and synthesis of a water-soluble two-dimensional (2D) supramolecular organic framework (TP-SOF) using the host-guest interaction between a triphenylamine derivative (TP-3Py) and cucurbit[8]uril (CB[8]). The formation of the 2D SOF can be attributed to the synergistic impact resulting from the orientated head-to-tail superposition mode between the vinylpyridine arms of TP-3Py and CB[8], which results in a significant redshift in the UV-vis absorption spectrum, especially displaying a strong absorption band in the green light region. The monomeric TP-3Py can effectively produce singlet oxygen (1O2) and realize the photocatalytic oxidation of thioanisole in the aqueous solution. In comparison to monomeric TP-3Py, the confinement effect of CB[8] results in a notable enhancement in the production efficiency of superoxide anion radicals (O2•-), exhibiting promising prospects in the field of photocatalytic oxidation reaction, which facilitates the application of TP-SOF as a very efficient photosensitizer for the promotion of the oxidative hydroxylation of arylboronic acids under green light in the aqueous solution, giving a high yield of 91%. The present study not only presents a compelling illustration of photocatalysis utilizing a 2D SOF derived from triphenylamine, but also unveils promising avenues for the photocatalytic oxidation of SOF employing low-energy light systems.
Collapse
Affiliation(s)
- Xuan-Zong Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Rong-Xin Zhu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Ru-Yu Zhu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Shengsheng Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China.
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China.
| |
Collapse
|
5
|
Ren L, Jiang C, Zhang Y, Li M, Zhang Y, Shi X, Wang Q, Zhang S, Song X. Construction of a Near-Infrared Photoswitched Nanomachine Powered by an Endogenous Trigger for Activatable Imaging of Intracellular MicroRNA and Amplified Photodynamic Therapy for Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38044636 DOI: 10.1021/acsami.3c14420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
DNA nanomachines could initiate the cascade reaction in an autonomous mode under the drive of triggers, which achieve the signal amplification for the bioimaging of intracellular biomarkers. Compared with the "always-on" nanomachine that possibly produces false-positive signals, a controllable nanomachine with the on-site activation could be better for accurate tumor imaging and precise tumor therapy. Till now, the endogenous and exogenous triggers have been developed to design the controllable nanosensors. However, their combinations to develop feasible DNA nanomachines have been rarely studied. Herein, we constructed a near-infrared (NIR)-light-controlled DNA nanomachine that was first activated by the NIR light and then induced a target-triggered amplification process under the drive of an endogenous stimulus. Owing to adenosine-5'-triphosphate (ATP) having much higher concentration in cancer cells than that in healthy cells and the extracellular fluid, the obtained DNA nanomachine was selectively activated in cancer cells with inhibited interference signals from the surrounding healthy tissues. With obvious advantages including the exogenous NIR light initiation, the selective activation by the target microRNA, and the sensitive acceleration by the ATP-induced strand recycling reaction, the constructed nanomachine could be used to image the intracellular microRNA with increased sensitivity. Besides, after modifying the DNA sequence with the photosensitizer molecules, the obtained nanomachine could perform the selective photodynamic therapy on the tumor sections with the outstandingly decreased side effects. Thus, we hope the designed nanomachine could provide some important hints to design feasible nanomachines for accurate tumor diagnosis and precise tumor therapy.
Collapse
Affiliation(s)
- Linlin Ren
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Chengfang Jiang
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Yuqi Zhang
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Mengmeng Li
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Yan Zhang
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Xinli Shi
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Qi Wang
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, P. R. China
| | - Xinyue Song
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, P. R. China
| |
Collapse
|
6
|
Yin C, Yan ZA, Ma X. A supramolecular assembly strategy towards organic luminescent materials. Chem Commun (Camb) 2023; 59:13421-13433. [PMID: 37877212 DOI: 10.1039/d3cc04051h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Supramolecular organic luminescent materials with different dimensionalities usually exhibit different optical properties as well as their potential applications in various fields. Recent reports showed that non-covalent interactions are useful tools to obtain diverse luminescent materials due to their dynamicity and reversibility, including π-π stacking, host-guest interactions, hydrophobic effects, hydrogen bonding, electrostatic effects and so on. In this review, we summarized recent progress in zero-, one-, two-, three-dimensional and disordered organic luminescent materials using the aforementioned strategies, in order to provide a solution for designing luminescent materials with specific structures and morphologies. The relationship between assembly behavior and luminescent properties is discussed in detail, along with the existing difficulties hindering the development of supramolecular assembly systems and future research directions.
Collapse
Affiliation(s)
- Chenjia Yin
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China.
| | - Zi-Ang Yan
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China.
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China.
| |
Collapse
|
7
|
Zhao Z, Yang J, Liu Y, Wang S, Zhou W, Li ZT, Zhang DW, Ma D. Acyclic cucurbit[ n]uril-based nanosponges significantly enhance the photodynamic therapeutic efficacy of temoporfin in vitro and in vivo. J Mater Chem B 2023; 11:9027-9034. [PMID: 37721029 DOI: 10.1039/d3tb01422c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Acyclic cucurbit[n]uril-based nanosponges are prepared based on supramolecular vesicle-templated cross-linking. The nanosponges are capable of encapsulating the clinically approved photodynamic therapeutic (PDT) drug temoporfin. When loaded with nanosponges, the PDT bioactivity of temoporfin is enhanced 7.5-fold for HeLa cancer cells and 20.8 fold for B16-F10 cancer cells, respectively. The reason for the significant improvement in PDT efficacy is confirmed to be an enhanced cell uptake by confocal laser scanning microscopy and flow cytometry. Animal studies show that nanosponges could dramatically increase the tumor suppression effect of temoporfin. In vitro and in vivo experiments demonstrate that nanosponges are nontoxic and biocompatible.
Collapse
Affiliation(s)
- Zizhen Zhao
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Jingyu Yang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Yamin Liu
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Shuyi Wang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
- School of Pharmaceutical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Road, Taizhou, Zhejiang 318000, China.
| | - Wei Zhou
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Zhan-Ting Li
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Dan-Wei Zhang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Da Ma
- School of Pharmaceutical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Road, Taizhou, Zhejiang 318000, China.
| |
Collapse
|
8
|
Kim TE, Chang JE. Recent Studies in Photodynamic Therapy for Cancer Treatment: From Basic Research to Clinical Trials. Pharmaceutics 2023; 15:2257. [PMID: 37765226 PMCID: PMC10535460 DOI: 10.3390/pharmaceutics15092257] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Photodynamic therapy (PDT) is an emerging and less invasive treatment modality for various types of cancer. This review provides an overview of recent trends in PDT research, ranging from basic research to ongoing clinical trials, focusing on different cancer types. Lung cancer, head and neck cancer, non-melanoma skin cancer, prostate cancer, and breast cancer are discussed in this context. In lung cancer, porfimer sodium, chlorin e6, and verteporfin have shown promising results in preclinical studies and clinical trials. For head and neck cancer, PDT has demonstrated effectiveness as an adjuvant treatment after surgery. PDT with temoporfin, redaporfin, photochlor, and IR700 shows potential in early stage larynx cancer and recurrent head and neck carcinoma. Non-melanoma skin cancer has been effectively treated with PDT using methyl aminolevulinate and 5-aminolevulinic acid. In prostate cancer and breast cancer, PDT research is focused on developing targeted photosensitizers to improve tumor-specific uptake and treatment response. In conclusion, PDT continues to evolve as a promising cancer treatment strategy, with ongoing research spanning from fundamental investigations to clinical trials, exploring various photosensitizers and treatment combinations. This review sheds light on the recent advancements in PDT for cancer therapy and highlights its potential for personalized and targeted treatments.
Collapse
Affiliation(s)
| | - Ji-Eun Chang
- College of Pharmacy, Dongduk Women’s University, Seoul 02748, Republic of Korea
| |
Collapse
|
9
|
Yeo S, Lee TH, Kim MJ, Shim YK, Yoon I, Song YK, Lee WK. Improved anticancer efficacy of methyl pyropheophorbide-a-incorporated solid lipid nanoparticles in photodynamic therapy. Sci Rep 2023; 13:7391. [PMID: 37149617 PMCID: PMC10164167 DOI: 10.1038/s41598-023-34265-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023] Open
Abstract
Photodynamic therapy (PDT) is a promising anticancer treatment because it is patient-friendly and non-invasive. Methyl pyropheophorbide-a (MPPa), one of the chlorin class photosensitizers, is a drug with poor aqueous solubility. The purpose of this study was to synthesize MPPa and develop MPPa-loaded solid lipid nanoparticles (SLNs) with improved solubility and PDT efficacy. The synthesized MPPa was confirmed 1H nuclear magnetic resonance (1H-NMR) spectroscopy and UV-Vis spectroscopy. MPPa was encapsulated in SLN via a hot homogenization with sonication. Particle characterization was performed using particle size and zeta potential measurements. The pharmacological effect of MPPa was evaluated using the 1,3-diphenylisobenzofuran (DPBF) assay and anti-cancer effect against HeLa and A549 cell lines. The particle size and zeta potential ranged from 231.37 to 424.07 nm and - 17.37 to - 24.20 mV, respectively. MPPa showed sustained release from MPPa-loaded SLNs. All formulations improved the photostability of MPPa. The DPBF assay showed that SLNs enhanced the 1O2 generation from MPPa. In the photocytotoxicity analysis, MPPa-loaded SLNs demonstrated cytotoxicity upon photoirradiation but not in the dark. The PDT efficacy of MPPa improved following its entrapment in SLNs. This observation suggests that MPPa-loaded SLNs are suitable for the enhanced permeability and retention effect. Together, these results demonstrate that the developed MPPa-loaded SLNs are promising candidates for cancer treatment using PDT.
Collapse
Grants
- No.5199991614715 Fostering Outstanding Universities for Research
- NRF-2020R1I1A1A01060632 National Research Foundation of Korea
- S3248094 Collabo R&D between Industry, University, and Research Institute funded by Korea Ministry of SMEs and Startups
- S3248094 Collabo R&D between Industry, University, and Research Institute funded by Korea Ministry of SMEs and Startups
- S3248094 Collabo R&D between Industry, University, and Research Institute funded by Korea Ministry of SMEs and Startups
- S3248094 Collabo R&D between Industry, University, and Research Institute funded by Korea Ministry of SMEs and Startups
- S3248094 Collabo R&D between Industry, University, and Research Institute funded by Korea Ministry of SMEs and Startups
- S3248094 Collabo R&D between Industry, University, and Research Institute funded by Korea Ministry of SMEs and Startups
- S3248094 Collabo R&D between Industry, University, and Research Institute funded by Korea Ministry of SMEs and Startups
Collapse
Affiliation(s)
- Sooho Yeo
- Center for Nano Manufacturing and Department of Nanoscience and Engineering, Inje University, Gimhae, 50834, South Korea.
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Seoul, South Korea.
| | - Tae Heon Lee
- Research Center of Dr. I&B Co., DaeJeon, Republic of Korea
| | - Min Je Kim
- Center for Nano Manufacturing and Department of Nanoscience and Engineering, Inje University, Gimhae, 50834, South Korea
| | - Young Key Shim
- Research Center of Dr. I&B Co., DaeJeon, Republic of Korea
| | - Il Yoon
- Center for Nano Manufacturing and Department of Nanoscience and Engineering, Inje University, Gimhae, 50834, South Korea
| | - Young Kyu Song
- Research Center of Dr. I&B Co., DaeJeon, Republic of Korea.
| | - Woo Kyoung Lee
- Center for Nano Manufacturing and Department of Nanoscience and Engineering, Inje University, Gimhae, 50834, South Korea.
| |
Collapse
|
10
|
A novel strategy of constructing 2D supramolecular organic framework sensor for the identification of toxic metal ions. NANO MATERIALS SCIENCE 2023. [DOI: 10.1016/j.nanoms.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
Li ZT, Yu SB, Liu Y, Tian J, Zhang DW. Supramolecular Organic Frameworks: Exploring Water-Soluble, Regular Nanopores for Biomedical Applications. Acc Chem Res 2022; 55:2316-2325. [PMID: 35916446 DOI: 10.1021/acs.accounts.2c00335] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In past decades, regular porous architectures have received a great amount of attention because of their versatile functions and applications derived from their efficient adsorption of various guests. However, most reported porous architectures exist only in the solid state. Therefore, their applications as biomaterials may face several challenges, such as phase separation, slow degradation, and long-term accumulation in the body. This Account summarizes our efforts with respect to the development and biomedical applications of water-soluble 3D diamondoid supramolecular organic frameworks (dSOFs), a family of supramolecular polymers that possess intrinsic regular nanoscale porosity.dSOFs have been constructed from tetratopic components and cucurbit[8]uril (CB[8]) through hydrophobically driven encapsulation by CB[8] for intermolecular dimers formed by peripheral aromatic subunits of the tetratopic components in water. All dSOFs exhibit porosity regularity or periodicity in aqueous solution, which is confirmed by solution-phase synchrotron SAXS and XRD experiments. Dynamic light scattering (DLS) reveals that their sizes range from 50 to 150 nm, depending on the concentrations of the components. As nonequilibrium supramolecular architectures, dSOFs can maintain their nanoscale sizes at micromolar concentrations for dozens of hours. Their diamondoid pores have aperture sizes ranging from 2.1 to 3.6 nm, whereas their water solubility and porosity regularity allow them to rapidly include discrete guests driven by ion-pair electrostatic attraction, hydrophobicity, or a combination of the two interactions. The guests may be small molecule or large macromolecular drugs, photodynamic agents (PDAs), or DNA.The rapid inclusion of bioactive guests into dSOFs has led to two important biofunctions. The first is to function as antidotes through including residual drugs. For heparins, the inclusion results in full neutralization of their anticoagulant activity. For clinically used porphyrin PDAs, the inclusion can alleviate their long-term posttreatment phototoxicity but does not reduce their photodynamic efficacy. The second is to function as in situ loading carriers for the intracellular delivery of antitumor drugs or DNA. Their nanoscale sizes bring out their ability to overcome the multidrug resistance of tumor cells, which leads to a remarkable enhancement of the bioactivity of the included drugs. By conjugating aldoxorubicin to tetrahedral components, albumin-mimicking prodrugs have also been constructed, which conspicuously improves the efficacy of aldoxorubicin toward multi-drug-resistant tumors through the delivery of the frameworks. As new supramolecular drugs and carriers, dSOFs are generally biocompatible. Thus, further efforts might lead to medical benefits in the future.
Collapse
Affiliation(s)
- Zhan-Ting Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China.,Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shang-Bo Yu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Yamin Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Jia Tian
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Dan-Wei Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| |
Collapse
|
12
|
Liu YY, Wang ZK, Yu SB, Liu Y, Wang H, Zhou W, Li ZT, Zhang DW. Conjugating aldoxorubicin to supramolecular organic frameworks: polymeric prodrugs with enhanced therapeutic efficacy and safety. J Mater Chem B 2022; 10:4163-4171. [DOI: 10.1039/d2tb00678b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phase I-III clinical studies show that aldoxorubicin (AlDox), a prodrug of doxorubicin (Dox), displays superior cardiotocity over Dox, but does not demonstrate a survival benefit in the entire patients. Here...
Collapse
|