1
|
Chen Z, Zhou Y, Li L, Ma W, Li Y, Yang Z. Activatable Molecular Probes With Clinical Promise for NIR-II Fluorescent Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2411787. [PMID: 39707663 DOI: 10.1002/smll.202411787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/09/2024] [Indexed: 12/23/2024]
Abstract
The second near-infrared window (NIR-II) fluorescence imaging has been widely adopted in basic scientific research and preclinical applications due to its exceptional spatiotemporal resolution and deep tissue penetration. Among the various fluorescent agents, organic small-molecule fluorophores are considered the most promising candidates for clinical translation, owing to their well-defined chemical structures, tunable optical properties, and excellent biocompatibility. However, many currently available NIR-II fluorophores exhibit an "always-on" fluorescence signal, which leads to background noise and compromises diagnostic accuracy during disease detection. Developing NIR-II activatable organic small-molecule fluorescent probes (AOSFPs) for accurately reporting pathological changes is key to advancing NIR-II fluorescence imaging toward clinical application. This review summarizes the rational design strategies for NIR-II AOSFPs based on four core structures (cyanine, hemicyanine, xanthene, and BODIPY). These NIR-II AOSFPs hold substantial potential for clinical translation. Furthermore, the recent advances in NIR-II AOSFPs for NIR-II bioimaging are comprehensively reviewed, offering clear guidance and direction for their further development. Finally, the prospective efforts to advance NIR-II AOSFPs for clinical applications are outlined.
Collapse
Affiliation(s)
- Zikang Chen
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Yongjie Zhou
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Li Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Wen Ma
- Strait Institute of Flexible Electronics (SIFE Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Yuzhen Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Zhen Yang
- Strait Institute of Flexible Electronics (SIFE Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| |
Collapse
|
2
|
Chen D, Xu Y, Wang Y, Teng C, Li X, Yin D, Yan L. J-aggregates of strong electron-donating groups linked Aza-BODIPY adjusting by polypeptide for NIR-II phototheranostics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124789. [PMID: 39013303 DOI: 10.1016/j.saa.2024.124789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024]
Abstract
The commonly employed strategies for engineering second near-infrared (NIR-II) organic phototheranostic agents are based on expanding conjugated backbone length, strengthening donor (D)-acceptor (A) effect, or forming J-aggregates. We constructed the D-A-D' structure by incorporating strong electron-donating methoxy and tetraphenylethene (TPE) moieties on the electron-deficient Aza-BODIPY core, and simultaneously expanded the π-conjugation effect by introducing thiophene groups, to obtain a dye BDP-TPE. Next, the nanoparticles P-TPE were prepared via the assembly of BDP-TPE with amphiphilic polypeptides (mPEG2000-P(Asp)10), and successfully constructed the J-aggregates. The obtained P-TPE exhibited strong absorption and fluorescence with maxima at 808 and 1018 nm, respectively, with a conspicuous absolute quantum yield of 0.241 %. Moreover, P-TPE also showed excellent biocompatibility, and high photothermal conversion efficiency of 61.15 %, and excellent resistance to pH, long-term storage, and photobleaching. In vitro and in vivo experiments revealed that P-TPE exhibited good biocompatibility and effectively achieved NIR-II fluorescence imaging-guided PTT with complete tumor ablation under 808 nm laser irradiation. These results provided good evidence for the use of P-TPE as a NIR-II fluorescence imaging-guided PTT therapeutic agent in vivo.
Collapse
Affiliation(s)
- Dejia Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China. Hefei, Jinzai road 96, 230026, Anhui, PR China; Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96, 230026, Anhui, PR China
| | - Yixuan Xu
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96, 230026, Anhui, PR China
| | - Yating Wang
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96, 230026, Anhui, PR China
| | - Changchang Teng
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96, 230026, Anhui, PR China
| | - Xin Li
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96, 230026, Anhui, PR China
| | - Dalong Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China. Hefei, Jinzai road 96, 230026, Anhui, PR China
| | - Lifeng Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China. Hefei, Jinzai road 96, 230026, Anhui, PR China; Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96, 230026, Anhui, PR China.
| |
Collapse
|
3
|
Chen D, Xu Y, Wang Y, Li X, Yin D, Yan L. Diradicaloid-Loaded Polypeptide Nanoparticles for Two-Photon NIR Phototheranostics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59907-59920. [PMID: 39441126 DOI: 10.1021/acsami.4c13338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Stable organic radicals, with unique electronic transitions from the ground state (D0) to the doublet excited state (D1), show promise as high-fluorescence quantum yield dyes. While organic small-molecule photosensitizers (PSs) have advanced for tumor photodynamic therapy (PDT), opportunities exist to enhance their performance and functionality. Herein, we synthesized Thiele's fluorocarbon derivative diradicaloid TFC-I with nearly 100% PLQY and integrated it into amphiphilic polypeptide nanoparticles, P-TI, using a precursor-doping approach. P-TI demonstrated notable features including high photostability, aggregation-induced emission, bright near-infrared fluorescence, substantial quantum yield (37% PLQY), robust near-infrared two-photon absorption (∼400 GM cross section), and superior ROS generation compared to commercial PSs. In vitro and in vivo experiments confirmed that P-TI performed well in mitochondria-targeted PDT, two-photon fluorescence imaging, and biosafety. This work highlights the use of organic stable radicals with precursor-doping for efficient PDT and deep tumor tissue imaging.
Collapse
Affiliation(s)
- Dejia Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Jinzai Road 96, 230026 Hefei, Anhui, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, 230026 Hefei, Anhui, P. R. China
| | - Yixuan Xu
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, 230026 Hefei, Anhui, P. R. China
| | - Yating Wang
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, 230026 Hefei, Anhui, P. R. China
| | - Xin Li
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, 230026 Hefei, Anhui, P. R. China
| | - Dalong Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Jinzai Road 96, 230026 Hefei, Anhui, P. R. China
| | - Lifeng Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Jinzai Road 96, 230026 Hefei, Anhui, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, 230026 Hefei, Anhui, P. R. China
| |
Collapse
|
4
|
Wang H, Liu H, Li W, Li S, Zhang J, Zang J, Liu L, Wang P. Supramolecular engineering cascade regulates NIR-II J-aggregates to improve photodynamic therapy. Chem Sci 2024; 15:11347-11357. [PMID: 39055007 PMCID: PMC11268488 DOI: 10.1039/d4sc03020f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Rational design of small organic molecule-based NIR-II photosensitizers (PSs) with high singlet oxygen quantum yield in aqueous solution for deep tissue imaging and cancer therapy still presents challenges. Herein, we devised a general synthesis strategy to obtain six NIR-II region PSs with tunable aggregation states by adjusting the steric effect, and all PSs possess longer NIR absorption/emission wavelengths with tails extending beyond 1200 nm. Notably, ATX-6 possessed a singlet oxygen quantum yield of 38.2% and exhibited concentration-dependent J-aggregation properties upon self-assembly in an aqueous solution. What's more, supramolecular engineering with DSPE-PEG2000 further enhanced its degree of J-aggregation, which was attributed to the dimer-excited reduction of the energy levels of the single-linear/triple-linear states and the facilitation of intersystem crossover processes. In addition, ATX-6 NPs showed superior photodynamic therapy effects and great potential in high-contrast in vivo bioimaging of the NIR-II region. These results provide valuable insights for achieving the diagnostic and therapeutic integration of tumors.
Collapse
Affiliation(s)
- Huizhe Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University Nanjing 210009 China
| | - Huijia Liu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University Nanjing 210009 China
| | - Wenqing Li
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University Nanjing 210009 China
| | - Shuai Li
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University Nanjing 210009 China
| | - Jiaqi Zhang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University Nanjing 210009 China
| | - Jingzhe Zang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University Nanjing 210009 China
| | - Li Liu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University Nanjing 210009 China
| | - Peng Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University Nanjing 210009 China
| |
Collapse
|
5
|
Chen M, Chen Y, Zhong M, Xie D, Wang C, Ren X, Huang S, Xu J, Zhu M. The Synergistic Mechanisms of AIE, ESIPT and ICT in the α-cyanostilbene-based Derivative: A Red-fluorescence Probe With a Large Stokes' Shift for Copper (II) Ion Determination and Reversible Response to Amine/acid Vapor. J Fluoresc 2024; 34:1075-1090. [PMID: 37458937 DOI: 10.1007/s10895-023-03341-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/06/2023] [Indexed: 05/02/2024]
Abstract
Herein, α-cyanostilbene-based luminogen with an electron donor-π-electron acceptor (D-π-A) architecture was formylated into the salicylaldehyde-analogue luminogen, followed by the Schiff base reaction with phenylamine, a red-emitting luminogen was elaborately designed and successfully synthesized in a high yield of 89%. Its well-defined structure was confirmed by FT-IR, MALDI-TOF-MS, HR-MS and 1H/13C NMR technologies. Based on the synergistic mechanisms of aggregation-induced emission (AIE), excited-state intramolecular proton transfer (ESIPT) and intramolecular charge transfer (ICT), it enjoyed a red-fluorescence emission at 627 nm in THF/water mixtures (fw = 95%) and was used as a probe. Moreover, the TLC-based test strips loaded with the probe not only exhibited the reversible fluorescence response to amine/acid vapor but also showed sensitive and selective fluorescence response towards Cu2+. Furthermore, the fluorescence titration experiment between the probe and Cu2+ in THF/water mixtures (fw = 95%, pH = 7.4) revealed that the detection limit was 1.18 × 10-7 M and the binding constant was 1.59 × 105. Job's plot experiment and HR-MS analysis revealed the 2:1 binding stoichiometry of the probe with Cu2+. The method enabled real-time assessment for Cu2+ in real water samples. This study could offer insightful opinions on the development of long-wavelength emissive luminogens based on α-cyanostilbene.
Collapse
Affiliation(s)
- Meihui Chen
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, P. R. China
| | - Yongchun Chen
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, P. R. China
| | - Min Zhong
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, P. R. China
| | - Donghong Xie
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, P. R. China
| | - Chuan Wang
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, P. R. China
| | - Xiaorui Ren
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, P. R. China
| | - Shizhou Huang
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, P. R. China
| | - Jia Xu
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, P. R. China
| | - Mingguang Zhu
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, P. R. China.
| |
Collapse
|
6
|
Wu S, Zhang W, Li C, Ni Z, Chen W, Gai L, Tian J, Guo Z, Lu H. Rational design of CT-coupled J-aggregation platform based on Aza-BODIPY for highly efficient phototherapy. Chem Sci 2024; 15:5973-5979. [PMID: 38665518 PMCID: PMC11040637 DOI: 10.1039/d3sc06976a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/26/2024] [Indexed: 04/28/2024] Open
Abstract
Supramolecular engineering is exceptionally appealing in the design of functional materials, and J-aggregates resulting from noncovalent interactions offer intriguing features. However, building J-aggregation platforms remains a significant challenge. Herein, we report 3,5-dithienyl Aza-BODIPYs with a donor-acceptor-donor (D-A-D) architecture as the first charge transfer (CT)-coupled J-aggregation BODIPY-type platform. The core acceptor moieties in one molecule interact with donor units in neighboring molecules to generate slip-stacked packing motifs, resulting in CT-coupled J-aggregation with a redshifted wavelength up to 886 nm and an absorption tail over 1100 nm. The J-aggregates show significant photoacoustic signals and high photothermal conversion efficiency of 66%. The results obtained in vivo show that the J-aggregates have the potential to be used for tumor photothermal ablation and photoacoustic imaging. This study not only demonstrates Aza-BODIPY with D-A-D as a novel CT-coupled J-aggregation platform for NIR phototherapy materials but also motivates further study on the design of J-aggregation.
Collapse
Affiliation(s)
- Shengmei Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Wenze Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Chaoran Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Zhigang Ni
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Weifeng Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Lizhi Gai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Hua Lu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| |
Collapse
|
7
|
Guo X, Sheng W, Pan H, Guo L, Zuo H, Wu Z, Ling S, Jiang X, Chen Z, Jiao L, Hao E. Tuning Shortwave-Infrared J-aggregates of Aromatic Ring-Fused Aza-BODIPYs by Peripheral Substituents for Combined Photothermal and Photodynamic Therapies at Ultralow Laser Power. Angew Chem Int Ed Engl 2024; 63:e202319875. [PMID: 38225205 DOI: 10.1002/anie.202319875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Achieving photothermal therapy (PTT) at ultralow laser power density is crucial for minimizing photo-damage and allowing for higher maximum permissible skin exposure. However, this requires photothermal agents to possess not just superior photothermal conversion efficiency (PCE), but also exceptional near-infrared (NIR) absorptivity. J-aggregates, exhibit a significant redshift and narrower absorption peak with a higher extinction coefficient. Nevertheless, achieving predictable J-aggregates through molecular design remains a challenge. In this study, we successfully induced desirable J-aggregation (λabs max : 968 nm, ϵ: 2.96×105 M-1 cm-1 , λem max : 972 nm, ΦFL : 6.2 %) by tuning electrostatic interactions between π-conjugated molecular planes through manipulating molecular surface electrostatic potential of aromatic ring-fused aza-BODIPY dyes. Notably, by controlling the preparation method for encapsulating dyes into F-127 polymer, we were able to selectively generate H-/J-aggregates, respectively. Furthermore, the J-aggregates exhibited two controllable morphologies: nanospheres and nanowires. Importantly, the shortwave-infrared J-aggregated nanoparticles with impressive PCE of 72.9 % effectively destroyed cancer cells and mice-tumors at an ultralow power density of 0.27 W cm-2 (915 nm). This phototherapeutic nano-platform, which generates predictable J-aggregation behavior, and can controllably form J-/H-aggregates and selectable J-aggregate morphology, is a valuable paradigm for developing photothermal agents for tumor-treatment at ultralow laser power density.
Collapse
Affiliation(s)
- Xing Guo
- Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Wanle Sheng
- Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Hongfei Pan
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Luying Guo
- Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Huiquan Zuo
- Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Zeyu Wu
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, China
| | - Shizhang Ling
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, China
| | - Xiaochun Jiang
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, China
| | - Zhijian Chen
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Lijuan Jiao
- Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Erhong Hao
- Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| |
Collapse
|
8
|
Zhang HJ, Wei Y, Lin J. Frustrated π-stacking. Chem Commun (Camb) 2024; 60:935-942. [PMID: 38165791 DOI: 10.1039/d3cc04123a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The properties of functional materials based on organic π-conjugated systems are governed extensively by intermolecular interactions between π-molecules. To establish clear relationships between supramolecular structures and functional properties, it is essential to attain structurally well-defined π-stacks, particularly in solution, as this enables the collection of valuable spectroscopic data. However, precise control and fine-tuning of π-stacks pose significant challenges due to the weak and bidirectional nature of π-π stacking interactions. This article introduces the concept of "frustrated π-stacking," strategically balancing attractive (π-π interaction) and repulsive (steric hindrance) forces in self-assembly to exert control over the sizes, sequences of π-stacks, and slip-stacked structures. These research efforts contribute to a deeper understanding of the correlation between π-stacks and their properties, thereby providing useful insights for the development of molecular materials with the desired performance.
Collapse
Affiliation(s)
- Hui-Jun Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, P. R. China.
| | - Yifei Wei
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, P. R. China.
| | - Jianbin Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, P. R. China.
| |
Collapse
|
9
|
Chansaenpak K, Yong GY, Prajit A, Hiranmartsuwan P, Selvapaandian S, Ouengwanarat B, Khrootkaew T, Pinyou P, Kue CS, Kamkaew A. Aza-BODIPY-based polymeric nanoparticles for photothermal cancer therapy in a chicken egg tumor model. NANOSCALE ADVANCES 2024; 6:406-417. [PMID: 38235075 PMCID: PMC10790972 DOI: 10.1039/d3na00718a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/27/2023] [Indexed: 01/19/2024]
Abstract
A new push-pull aza-BODIPY (AZB-CF3) derivative comprised of dimethylamino groups and trifluoromethyl moieties was successfully synthesized. This derivative exhibited broad absorption in the near-infrared region in the range from 798 to 832 nm. It also exhibited significant near-infrared (NIR) signals in low-polar solvents with emission peaks around 835-940 nm, while non-fluorescence in high-polar environments due to the twisted intramolecular charge transfer (TICT) phenomenon. The nanoprecipitation of this compound with phospholipid-based polyethylene glycol (DSPE-PEG) yielded AZB-CF3@DSPE-PEG nanoparticles (NPs) with a hydrodynamic size of 70 nm. The NPs exhibited good photostability, colloidal stability, biocompatibility, and excellent photothermal (PTT) competence with a conversion efficiency (η) of 44.9%. These NPs were evaluated in vitro and in ovo in a 4T1 breast cancer cell line for NIR light-trigger photothermal therapy. Proven in the chicken egg tumor model, AZB-CF3@DSPE-PEG NPs induced severe vascular damage (∼40% vascular destruction), showed great anticancer efficacy (∼75% tumor growth inhibition), and effectively inhibited distant metastasis via photothermal treatment. As such, this PTT-based nanocarrier system could be a potential candidate for a clinical cancer therapy approach.
Collapse
Affiliation(s)
- Kantapat Chansaenpak
- National Nanotechnology Center, National Science and Technology Development Agency Thailand Science Park Pathum Thani Thailand 12120
| | - Gong Yi Yong
- Faculty of Health and Life Sciences, Management and Science University Seksyen 13 Shah Alam Selangor Malaysia 40100
| | - Anawin Prajit
- School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima Thailand 30000
| | - Peraya Hiranmartsuwan
- National Nanotechnology Center, National Science and Technology Development Agency Thailand Science Park Pathum Thani Thailand 12120
| | - Shaamini Selvapaandian
- Faculty of Health and Life Sciences, Management and Science University Seksyen 13 Shah Alam Selangor Malaysia 40100
| | - Bongkot Ouengwanarat
- School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima Thailand 30000
| | - Tunyawat Khrootkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima Thailand 30000
| | - Piyanut Pinyou
- School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima Thailand 30000
| | - Chin Siang Kue
- Faculty of Health and Life Sciences, Management and Science University Seksyen 13 Shah Alam Selangor Malaysia 40100
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima Thailand 30000
| |
Collapse
|
10
|
Hu X, Zhu C, Sun F, Chen Z, Zou J, Chen X, Yang Z. J-Aggregation Strategy toward Potentiated NIR-II Fluorescence Bioimaging of Molecular Fluorophores. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304848. [PMID: 37526997 DOI: 10.1002/adma.202304848] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/28/2023] [Indexed: 08/03/2023]
Abstract
Molecular fluorophores emitting in the second near-infrared (NIR-II, 1000-1700 nm) window with strong optical harvesting and high quantum yields hold great potential for in vivo deep-tissue bioimaging and high-resolution biosensing. Recently, J-aggregates are harnessed to engineer long-wavelength NIR-II emitters and show unique superiority in tumor detection, vessel mapping, surgical navigation, and phototheranostics due to their bathochromic-shifted optical bands in the required slip-stacked arrangement aggregation state. However, despite the preliminary progress of NIR-II J-aggregates and theoretical study of structure-property relationships, further paradigms of NIR-II J-aggregates remain scarce due to the lack of study on aggregated fluorophores with slip-stacked fashion. In this effort, how to utilize the specific molecular structure to form slip-stacked packing motifs with J-type aggregated exciton coupling is emphatically elucidated. First, several molecular regulating strategies to achieve NIR-II J-aggregates containing intermolecular interactions and external conditions are positively summarized and deeply analyzed. Then, the recent reports on J-aggregates for NIR-II bioimaging and theranostics are systematically summarized to provide a clear reference and direction for promoting the development of NIR-II organic fluorophores. Eventually, the prospective efforts on ameliorating and promoting NIR-II J-aggregates to further clinical practices are outlined.
Collapse
Affiliation(s)
- Xiaoming Hu
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Caijun Zhu
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Fengwei Sun
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Zejing Chen
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Jianhua Zou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR) 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Zhen Yang
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| |
Collapse
|
11
|
Manha Veedu R, Niemeyer N, Bäumer N, Kartha Kalathil K, Neugebauer J, Fernández G. Sterically Allowed H-type Supramolecular Polymerizations. Angew Chem Int Ed Engl 2023; 62:e202314211. [PMID: 37797248 DOI: 10.1002/anie.202314211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/07/2023]
Abstract
The functionalization of π-conjugated scaffolds with sterically demanding substituents is a widely used tactic to suppress cofacial (H-type) stacking interactions, which may even inhibit self-assembly. Contrary to expectations, we demonstrate herein that increasing steric effects can result in an enhanced thermodynamic stability of H-type supramolecular polymers. In our approach, we have investigated two boron dipyrromethene (BODIPY) dyes with bulky phenyl (2) and mesityl (3) meso-substituents and compared their self-assembly in nonpolar media with that of a parent meso-methyl BODIPY 1 lacking bulky groups. While the enhanced steric demand induces pathway complexity, the superior thermodynamic stability of the H-type pathways can be rationalized in terms of additional enthalpic gain arising from intermolecular C-H⋅⋅⋅F-B interactions of the orthogonally arranged aromatic substituents, which overrule their inherent steric demand. Our findings underline the importance of balancing competing non-covalent interactions in self-assembly.
Collapse
Affiliation(s)
- Rasitha Manha Veedu
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| | - Niklas Niemeyer
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
- Universität Münster, Center for Multiscale Theory and Computation, Corrensstraße 36, 48149, Münster, Germany
| | - Nils Bäumer
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| | - Krishnan Kartha Kalathil
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills, Kottayam, Kerala-686560, India
| | - Johannes Neugebauer
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
- Universität Münster, Center for Multiscale Theory and Computation, Corrensstraße 36, 48149, Münster, Germany
| | - Gustavo Fernández
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
12
|
Zhu Y, Wu P, Liu S, Yang J, Wu F, Cao W, Yang Y, Zheng B, Xiong H. Electron-Withdrawing Substituents Allow Boosted NIR-II Fluorescence in J-Type Aggregates for Bioimaging and Information Encryption. Angew Chem Int Ed Engl 2023; 62:e202313166. [PMID: 37817512 DOI: 10.1002/anie.202313166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/24/2023] [Accepted: 10/10/2023] [Indexed: 10/12/2023]
Abstract
Developing molecular fluorophores with enhanced fluorescence in aggregate state for the second near-infrared (NIR-II) imaging is highly desirable but remains a tremendous challenge due to the lack of reliable design guidelines. Herein, we report an aromatic substituent strategy to construct highly bright NIR-II J-aggregates. Introduction of electron-withdrawing substituents at 3,5-aryl and meso positions of classic boron dipyrromethene (BODIPY) skeleton can promote slip-stacked J-type arrangement and further boost NIR-II fluorescence of J-aggregates via increased electrostatic repulsion and intermolecular hydrogen bond interaction. Notably, NOBDP-NO2 with three nitro groups (-NO2 ) shows intense NIR-II fluorescence at 1065 nm and high absolute quantum yield of 3.21 % in solid state, which can be successfully applied in bioimaging, high-level encoding encryption, and information storage. Moreover, guided by this electron-withdrawing substituent strategy, other skeletons (thieno-fused BODIPY, aza-BODIPY, and heptamethine cyanine) modified with -NO2 are converted into J-type aggregates with enhanced NIR-II fluorescence, showing great potential to convert aggregation caused emission quenching (ACQ) dyes into brilliant J-aggregates. This study provides a universal method for construction of strong NIR-II emissive J-aggregates by rationally manipulating molecular packing and establishing relationships among molecular structures, intermolecular interactions, and fluorescence properties.
Collapse
Affiliation(s)
- Yu Zhu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Peng Wu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Senyao Liu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Jieyu Yang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Fapu Wu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Wenwen Cao
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Yuexia Yang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Bingbing Zheng
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Hu Xiong
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| |
Collapse
|
13
|
Shao C, Gong X, Zhang D, Jiang XD, Du J, Wang G. Aza-BODIPY with two efficacious fragments for NIR light-driven photothermal therapy by triggering cancer cell apoptosis. J Mater Chem B 2023; 11:10625-10631. [PMID: 37920935 DOI: 10.1039/d3tb02132g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The reasonable structure of aza-BODIPY renders it as an efficient photothermal reagent for photothermal therapy. Herein, we describe the design and synthesis of aza-BODIPY NMeBu with the free rotating tert-butyl group and the dimethylamino-substituted segment to promote the photothermal conversion via the excited state non-radiative transition. NMeBu was found to be the π-π stacking form in the unit cell based on X-ray analysis. NMeBu-NPs by self-assembly possessed a near-infrared absorption (λabs = 772 nm), and once activated by near-infrared light, the photothermal efficiency in aqueous solution can reach 49.3%. NMeBu-NPs can penetrate the cell and trigger cell death via the apoptosis pathway under low concentration and low light power irradiation, thereby avoiding dark toxicity. Aza-BODIPY created using this procedure has excellent photothermal efficiency and could serve as a potential candidate for the treatment of cancer cells and tumors.
Collapse
Affiliation(s)
- Chunyu Shao
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China.
| | - Xiuyan Gong
- Department of Cell Biology, China Medical University, Shenyang, 110122, China.
| | - Dongxiang Zhang
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China.
| | - Xin-Dong Jiang
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China.
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China.
| | - Guiling Wang
- Department of Cell Biology, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
14
|
Yang N, Song S, Akhtar MH, Liu C, Yao L, Yu J, Li Y, Li Q, He D, Yu C. J-Aggregation induced NIR-II fluorescence: an aza-BODIPY luminogen for efficient phototheranostics. J Mater Chem B 2023; 11:9712-9720. [PMID: 37791404 DOI: 10.1039/d3tb01280h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The development of organic dyes with emission peaks in the second near-infrared window (NIR-II 1000-1700 nm) is highly desirable for in vivo imaging and imaging-guided phototheranostics. However, the lack of appropriate molecular frameworks and the challenges associated with complex synthesis critically hinder the development of new candidate fluorophores. J-Aggregation is considered as a smart and straightforward way to construct such a therapeutic agent with NIR-II fluorescence imaging properties. Here, we present the design and synthesis of an aza-BODIPY probe (TA). Upon encapsulation within the amphiphilic polymer DSPEG-PEG2000-NH2, TA underwent self-assembly and formed J-aggregates (TAJ NPs), which showed emission at 1020 nm. High spatial resolution and adequate signal-to-noise ratio of the TAJ NPs are demonstrated for noninvasive bioimaging of the vasculature, lymph nodes and bones of mice in the NIR-II region. Moreover, the TAJ NPs exhibited good tumor enrichment efficiency with reduced liver accumulation and significant imaging-guided phototherapy performance against lung cancer cells. Taken together, this work not only introduces a new NIR-II imaging and phototheranostic agent based on J-aggregates, but also provides insight into the development of versatile organic dyes for future clinical implementation.
Collapse
Affiliation(s)
- Na Yang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Shuang Song
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Mahmood Hassan Akhtar
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Chang Liu
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Lang Yao
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Jiayuan Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Ying Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Qianxue Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, P. R. China
| | - Di He
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Cong Yu
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| |
Collapse
|
15
|
Chen M, Zhong M, Huang S, Chen Y, Cao F, Hu H, Huang W, Ji D, Zhu M. α-Cyanostilbene-based sensor with “AIE and ESIPT” features emitting long-wavelength intense red-fluorescence for highly selective and sensitive detection of Cu2+. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
16
|
Cheng HB, Cao X, Zhang S, Zhang K, Cheng Y, Wang J, Zhao J, Zhou L, Liang XJ, Yoon J. BODIPY as a Multifunctional Theranostic Reagent in Biomedicine: Self-Assembly, Properties, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207546. [PMID: 36398522 DOI: 10.1002/adma.202207546] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/18/2022] [Indexed: 05/05/2023]
Abstract
The use of boron dipyrromethene (BODIPY) in biomedicine is reviewed. To open, its synthesis and regulatory strategies are summarized, and inspiring cutting-edge work in post-functionalization strategies is highlighted. A brief overview of assembly model of BODIPY is then provided: BODIPY is introduced as a promising building block for the formation of single- and multicomponent self-assembled systems, including nanostructures suitable for aqueous environments, thereby showing the great development potential of supramolecular assembly in biomedicine applications. The frontier progress of BODIPY in biomedical application is thereafter described, supported by examples of the frontiers of biomedical applications of BODIPY-containing smart materials: it mainly involves the application of materials based on BODIPY building blocks and their assemblies in fluorescence bioimaging, photoacoustic imaging, disease treatment including photodynamic therapy, photothermal therapy, and immunotherapy. Lastly, not only the current status of the BODIPY family in the biomedical field but also the challenges worth considering are summarized. At the same time, insights into the future development prospects of biomedically applicable BODIPY are provided.
Collapse
Affiliation(s)
- Hong-Bo Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Xiaoqiao Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Shuchun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Keyue Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Yang Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jiaqi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jing Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Liming Zhou
- Henan Provincial Key Laboratory of Surface and Interface Science, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| |
Collapse
|
17
|
Zhang J, Li Y, Jiang M, Qiu H, Li Y, Gu M, Yin S. Self-Assembled Aza-BODIPY and Iron(III) Nanoparticles for Photothermal-Enhanced Chemodynamic Therapy in the NIR-II Window. ACS Biomater Sci Eng 2023; 9:821-830. [PMID: 36725684 DOI: 10.1021/acsbiomaterials.2c01539] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Despite its promising potential in cancer treatment, synergistic photothermal/chemodynamic therapy remains underdeveloped with regard to the utilization of metal-organic materials under second near-infrared (NIR-II) laser excitation. Herein, we report a three-dimensional network constructed via the metal coordination between catechol-functionalized aza-boron dipyrromethenes and iron ions (ABFe), which was further encapsulated by F127 to obtain ABFe nanoparticles (NPs) for combined photothermal/chemodynamic therapy. ABFe NPs exhibited intense absorption in the NIR-II range and negligible fluorescence. Upon 1064 nm laser irradiation, ABFe NPs showed high photothermal conversion efficiency (PCE = 55.0%) and excellent photothermal stability. The results of electron spin resonance spectra and o-phenylenediamine chromaticity spectrophotometry proved that ABFe NPs were capable of generating harmful reactive oxygen species from hydrogen peroxide for chemodynamic therapy, which was promoted by photothermal performance. Notably, in vitro and in vivo experiments demonstrated the great potential of ABFe NPs in photoacoustic imaging and photothermal-enhanced chemodynamic therapy under NIR-II laser irradiation. Therefore, the current work presents a prospective NIR-II excitation therapeutic nanomedicine for combination therapy, offering a novel strategy for simultaneously achieving extended NIR absorption of aza-BODIPY and enhanced chemodynamic therapy with metal-organic materials.
Collapse
Affiliation(s)
- Jinjin Zhang
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| | - Yaojun Li
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| | - Minling Jiang
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| | - Huayu Qiu
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| | - Yang Li
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| | - Meier Gu
- Laboratory Animal Center, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Shouchun Yin
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| |
Collapse
|
18
|
Özçelik Ş, Yurttaş AG, Kahveci MU, Sevim AM, Gül A. Aza-BODIPY photosensitizer substituted with phthalonitrile groups: Synthesis, photophysical properties and in vitro tests for breast cancer. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
19
|
Teng C, Dang H, Zhang S, Xu Y, Yin D, Yan L. J-aggregates of Br- and piperazine-modified cyanine dye with the assistance of amphiphilic polypeptides for efficient NIR-IIa phototheranostics under 1064 nm irradiation. Acta Biomater 2022; 154:572-582. [PMID: 36265791 DOI: 10.1016/j.actbio.2022.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/20/2022] [Accepted: 10/11/2022] [Indexed: 12/14/2022]
Abstract
The second near-infrared IIa window (NIR-IIa, 1300nm∼1400nm) enables high-resolution imaging and deep-tissue tumor treatment due to its unique low tissue scattering and autofluorescence, high temporal-spatial resolution, and deep tissue penetration. Therefore, NIR-IIa fluorescence imaging-guided phototherapy is of specific interest. However, organic dyes and their nanoparticles for NIR-IIa phototheranostics are still scarce. Here, we have synthesized a Br- and piperazine-modified cyanine dye (FN) and its nanomicelles encapsulated by an amphiphilic polypeptide with sidechains of tertiary amine (PEA). The J-aggregates of P@FN9 with 1116 nm absorption and efficient NIR-IIa fluorescence emission were formed by the self-assembly of FN and PEA. P@FN9 nanoparticles (NPs) showed good stability and high photothermal conversion efficiency (55.4%). In addition, the high spatial resolution and signal-to-background ratio (SBR) of P@FN9 were demonstrated by NIR-IIa fluorescence imaging of mouse vasculature. The P@FN9 NPs successfully performed the NIR-IIa fluorescence imaging-guided photothermal therapy, and both in vitro and in vivo experiments indicated that the P@FN9 NPs exhibited effective antitumor effects under the NIR-II (1064 nm) laser irradiation. STATEMENT OF SIGNIFICANCE.
Collapse
Affiliation(s)
- Changchang Teng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China
| | - Huiping Dang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China
| | - Shangzhong Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China
| | - Yixuan Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China
| | - Dalong Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China
| | - Lifeng Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China.
| |
Collapse
|
20
|
Kampaengsri S, Chansaenpak K, Yong GY, Hiranmartsuwan P, Uengwanarat B, Lai RY, Meemon P, Kue CS, Kamkaew A. PEGylated Aza-BODIPY Nanoparticles for Photothermal Therapy. ACS APPLIED BIO MATERIALS 2022; 5:4567-4577. [PMID: 36054220 DOI: 10.1021/acsabm.2c00624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Photothermal therapy is a promising treatment modality in the realm of cancer therapy. Photothermal nanomaterials that absorb and emit in the near-infrared range (750-900 nm) have drawn a lot of attention recently because of the deep penetration of NIR light in biological tissue. Most nanomaterials, however, are produced by encapsulating or altering the surface of a nanoplatform, which has limited loading capacity and long-term storage. Herein, we developed a stable polymer conjugated with aza-BODIPY that self-assembled to form nanoparticles (aza-BODIPY-mPEG) with better hydrophilicity and biocompatibility while retaining the dye's photothermal conversion characteristics. Aza-BODIPY-mPEG with a hydrodynamic size of around 170 nm exhibited great photostability and excellent photothermal therapy in vitro and in ovo. Aza-BODIPY-mPEG exhibits approximately 30% better anti-angiogenesis and antitumor activity against implanted xenograft human HCT116 tumor in the chick embryo compared to parent aza-BODIPY-A, altogether suggesting that aza-BODIPY-mPEG is a promising material for cancer photothermal therapy.
Collapse
Affiliation(s)
- Sastiya Kampaengsri
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Kantapat Chansaenpak
- National Science and Technology Development Agency, National Nanotechnology Center, Thailand Science Park, Pathum Thani 12120, Thailand
| | - Gong Yi Yong
- Faculty of Health and Life Sciences, Management and Science University, Seksyen 13, 40100 Shah Alam, Selangor, Malaysia
| | - Peraya Hiranmartsuwan
- National Science and Technology Development Agency, National Nanotechnology Center, Thailand Science Park, Pathum Thani 12120, Thailand
| | - Bongkot Uengwanarat
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Rung-Yi Lai
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Center of Excellence in Advanced Functional Materials, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Panomsak Meemon
- School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Center of Excellence in Advanced Functional Materials, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chin Siang Kue
- Faculty of Health and Life Sciences, Management and Science University, Seksyen 13, 40100 Shah Alam, Selangor, Malaysia
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Center of Excellence in Advanced Functional Materials, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
21
|
Bao X, Zheng S, Zhang L, Shen A, Zhang G, Liu S, Hu J. Nitric-Oxide-Releasing aza-BODIPY: A New Near-Infrared J-Aggregate with Multiple Antibacterial Modalities. Angew Chem Int Ed Engl 2022; 61:e202207250. [PMID: 35657486 DOI: 10.1002/anie.202207250] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 01/20/2023]
Abstract
The development of near-infrared (NIR) J-aggregates has received increasing attention due to their broad applications. Here, we report the nitrosation of an amine-containing aza-BODIPY precursor (BDP-NH2 ), affording the first nitric oxide (NO)-releasing NIR J-aggregate (BDP-NO). The introduction of N-nitrosamine moieties efficiently inhibits the aromatic interactions of BDP-NH2 , which instead promotes the formation of J-aggregates within micellar nanoparticles with a remarkable bathochromic shift of ≈109 nm to the NIR window (820 nm). Interestingly, the NO release and photothermal conversion efficiency (PTCE) can be delicately tuned by the loading contents of BDP-NO within micellar nanoparticles, thereby enabling multiple antibacterial modalities by exploring either NO release, photothermal therapy (PTT), or both. We demonstrate the combination of NO and PTT can elevate antibacterial activity while attenuating PTT-associated inflammation for the in vivo treatment of MRSA infection.
Collapse
Affiliation(s)
- Xinyao Bao
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230001, China
| | - Shaoqiu Zheng
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230001, China
| | - Lei Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230001, China
| | - Aizong Shen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230001, China
| | - Guoying Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230001, China
| | - Shiyong Liu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230001, China
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230001, China
| |
Collapse
|
22
|
Yang N, Song S, Liu C, Ren J, Wang X, Zhu S, Yu C. An aza-BODIPY-based NIR-II luminogen enables efficient phototheranostics. Biomater Sci 2022; 10:4815-4821. [PMID: 35856473 DOI: 10.1039/d2bm00670g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fabrication of a high-performance second near-infrared (NIR-II) biological window fluorophore is in urgent need for precise diagnosis and treatment of cancer. Nevertheless, the construction of phototherapeutic agents in the NIR-II region with excellent imaging performance and minimal side effects remains a big challenge due to the limited availability of core fluorophore candidates. In this study, a new NIR-II fluorescent probe, CB1, which is an aza-BODIPY core conjugated with bulky donors, was designed and synthesized. CB1 was further encapsulated in DSPE-PEG2000 to impart water solubility, which shows brighter NIR-II fluorescence and higher photostability than the clinically used indocyanine green (ICG). CB1 nanoparticles show deep tissue penetration and high imaging contrast in vivo. In addition, molecular conformation enables CB1 nanoparticles to exhibit good photothermal properties. Both in vitro and in vivo assessments confirm that CB1 nanoparticles could be utilized as distinguished theranostic agents for NIR-II fluorescence imaging and tumor growth inhibition with negligible side effects. Collectively, this work provides a promising approach for constructing a new platform for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Na Yang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China. .,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Shuang Song
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Chang Liu
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China. .,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Jia Ren
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China. .,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Xin Wang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P.R. China.,State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Shoujun Zhu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P.R. China.,State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Cong Yu
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China. .,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| |
Collapse
|
23
|
Bao X, Zheng S, Zhang L, Shen A, Zhang G, Liu S, Hu J. Nitric Oxide‐Releasing aza‐BODIPY: A New Near‐Infrared J‐Aggregate with Multiple Antibacterial Modalities. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xinyao Bao
- China University of Science and Technology Department of Polymer Science and Engineering CHINA
| | - Shaoqiu Zheng
- China University of Science and Technology Department of Polymer Science and Engineering CHINA
| | - Lei Zhang
- China University of Science and Technology Department of Pharmacy CHINA
| | - Aizong Shen
- China University of Science and Technology Department of Pharmacy CHINA
| | - Guoying Zhang
- China University of Science and Technology Department of Polymer Science and Engineering CHINA
| | - Shiyong Liu
- China University of Science and Technology Department of Polymer Science and Engineering CHINA
| | - Jinming Hu
- University of Science and Technology of China Department of Polymer Science and Engineering 96 Jinzhai Road230026中国 230026 Hefei CHINA
| |
Collapse
|