1
|
Cheng L, Huang M, Ren H, Wang Y, Cui H, Xu M. Advances in the development of N-glycopeptide enrichment materials based on hydrophilic interaction chromatography. Anal Bioanal Chem 2024:10.1007/s00216-024-05708-9. [PMID: 39710781 DOI: 10.1007/s00216-024-05708-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024]
Abstract
Protein glycosylation is one of the most important post-translational modifications, implicated in the development of various diseases, including neurodegenerative diseases, diabetes, and cancers. However, the low content of glycoproteins in biological samples, the diversity and heterogeneity of glycan structures, and insensitive detection methods make glycosylation analysis challenging. As a result, efficient enrichment of glycopeptides from complex samples is a critical step. Efficient enrichment technology can increase the abundance of intact N-glycopeptides in complex biological samples, thereby improving the sensitivity and coverage of glycosylation analysis, which is of great significance for the accurate identification of biomarkers and the development of glycopeptide-based drugs. Among various separation methods for N-glycopeptides, hydrophilic interaction chromatography has received increasing attention, and a variety of enrichment materials have been developed. This article classifies and describes the relevant hydrophilic interaction chromatography materials and provides a comprehensive review of their applications in N-glycopeptide enrichment regarding selectivity, sensitivity, and enrichment performance. Future development trends of ideal glycopeptide enrichment materials are also discussed.
Collapse
Affiliation(s)
- Li Cheng
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
- XJTLU Wisdom Lake Academy of Pharmacy-BEAVER Biomedical Joint Laboratory, Suzhou, 215123, China
| | - Mingxian Huang
- XJTLU Wisdom Lake Academy of Pharmacy-BEAVER Biomedical Joint Laboratory, Suzhou, 215123, China
- BEAVER Laboratories, Suzhou, 215123, China
| | - Hui Ren
- XJTLU Wisdom Lake Academy of Pharmacy-BEAVER Biomedical Joint Laboratory, Suzhou, 215123, China
- BEAVER Laboratories, Suzhou, 215123, China
| | - Yiqiang Wang
- XJTLU Wisdom Lake Academy of Pharmacy-BEAVER Biomedical Joint Laboratory, Suzhou, 215123, China
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Hongmei Cui
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China.
| | - Mingming Xu
- XJTLU Wisdom Lake Academy of Pharmacy-BEAVER Biomedical Joint Laboratory, Suzhou, 215123, China.
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
| |
Collapse
|
2
|
Cui W, Gong C, Liu Y, Yue Y, Wang J, Yang Z, Yang J. Composite antibacterial hydrogels based on two natural products pullulan and ε-poly-l-lysine for burn wound healing. Int J Biol Macromol 2024; 277:134208. [PMID: 39069059 DOI: 10.1016/j.ijbiomac.2024.134208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/20/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Antibacterial hydrogels as burn wound dressings are capable of efficaciously defending against bacterial infection and accelerating burn wound healing. Thus far, a large plethora of antibacterial hydrogels have adopted numerous components and intricate preparation processes, yet restricting their practical industrialization applications. Simple and effective preparation methods of antibacterial hydrogels are hence urgently needed. Herein, an easy but efficacious strategy with the employment of two natural products pullulan and ε-poly-l-lysine (ε-PL) was designed to fabricate composite antibacterial hydrogels for burn wound healing for the first time. The hydrogel crosslinking networks were formed through amidation reactions between carboxylated pullulan derivative (CP) and ε-poly-l-lysine hydrochloride (ε-PL·HCl). The resulting hydrogels possessed high transparency, porous structures, tunable gelation time and gel content, relatively low swelling ratios, appropriate self-degradability, proper mechanical properties, strong in vitro bacteriostatic activities, non-cytotoxicity, capacities of facilitating cell migration and excellent hemocompatibility. In the infected burn model of mice, the hydrogels were observed to display prominent in vivo antibacterial activities and enable the acceleration of burn wound healing. We opine the simply and effectively prepared antibacterial hydrogels as promising dressings for burn wound recovery have broad industrialization prospects.
Collapse
Affiliation(s)
- Wenzhuang Cui
- School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Chu Gong
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, China
| | - Yujie Liu
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, China
| | - Ying Yue
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Jun Wang
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, China.
| | - Zhizhou Yang
- School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Junli Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences (CAS), Lanzhou 730000, China.
| |
Collapse
|
3
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38925550 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
4
|
Liu S, Wang Y, Weng L, Wu J, Man Q, Xia Y, Huang LH. Water-stable hydrophilic metal organic framework composite for the recognition of N-glycopeptides during diabetes progression by mass spectrometry. Mikrochim Acta 2023; 191:11. [PMID: 38055058 DOI: 10.1007/s00604-023-06052-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/16/2023] [Indexed: 12/07/2023]
Abstract
A hydrophilic Al-MOFs composite was prepared using cheap and available reagents in water via a suitable large-scale production, an economical and environment-friendly method for capturing N-glycopeptides. The prepared Al-MOFs composite with high hydrolytically stable and hydrophilic 1D channels exhibits an ultralow detection limit (0.5 fmol/μL), and excellent reusability (at least 10 cycles) in the capture of N-glycopeptides from standard bio-samples. Interestingly, the Al-MOFs composite also shows remarkable performance in practical applications, where 300 N-glycopeptides ascribed to 124 glycoproteins were identified in 1 µL human serum and were successfully applied in profiling the differences of N-glycopeptides during diabetes progression. Moreover, 12 specific glycoproteins used as biomarkers to accurately distinguish the progression of diabetes are identified. The present work provides a potential commercial method for large-scale glycoproteomics research in complex clinical samples while offering new guidance for the precise diagnosis of diabetes progression.
Collapse
Affiliation(s)
- Shuangshuang Liu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Yang Wang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200438, China
| | - Lingxiao Weng
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200438, China
| | - Jiaqi Wu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Qiuhong Man
- Department of Clinical Laboratory, Shanghai Fourth People's Hospital, Tongji University, Shanghai, 200434, China.
| | - Yan Xia
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200438, China.
- School of Materials Science and Engineering, NingboTech University, Ningbo, 315100, China.
| | - Li-Hao Huang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
5
|
Cerrato A, Cavaliere C, Montone CM, Piovesana S. New hydrophilic material based on hydrogel polymer for the selective enrichment of intact glycopeptides from serum protein digests. Anal Chim Acta 2023; 1245:340862. [PMID: 36737137 DOI: 10.1016/j.aca.2023.340862] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
The paper describes the preparation and characterization of a new HILIC material for the enrichment of N-linked glycopeptides. The material was prepared using 2-acrylamido-2-methyl-1-propanesulfonic acid as the monomer and ethylene glycol dimethacrylate as the cross-linker. The material was developed by a Box-Behnken experimental design, taking into consideration the amount of monomer-to-crosslinker ratio, the composition, and the amount of porogen mixture. By this approach, the property of the resulting polymer could be fine-tuned to modulate the hydrophilicity and porosity. As HILIC enrichment is mostly dependent on hydrophilic interactions, including H-bonding, the amount of swelling was expected to have an important function, therefore the optimization considered a monomer percent in the range of 20-80%, which implied very different water swelling capacities. After assessing the potential of this new polymer family on fetuin digests, the 17 materials resulting from the Box-Behnken experimental design were used for the enrichment of glycopeptides from serum protein digests. The materials displayed a superior performance over cotton HILIC enrichment, both in terms of the number of enriched N-linked glycopeptides and selectivity, providing up to 762 N-linked glycopeptides with 77% selectivity. The optimization indicated that a high amount of monomer significantly affected the number of enriched glycopeptides, which is also closely connected with the hydrogel nature of the resulting polymers. The results not only provide one additional HILIC material for the enrichment of glycopeptides but also pave the way for the use and development of hydrogel materials for the enrichment of N-linked glycopeptides.
Collapse
Affiliation(s)
- Andrea Cerrato
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Carmela Maria Montone
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Susy Piovesana
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
6
|
Piovesana S, Cavaliere C, Cerrato A, Laganà A, Montone CM, Capriotti AL. Recent trends in glycoproteomics by characterization of intact glycopeptides. Anal Bioanal Chem 2023:10.1007/s00216-023-04592-z. [PMID: 36811677 PMCID: PMC10328862 DOI: 10.1007/s00216-023-04592-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023]
Abstract
This trends article provides an overview of the state of the art in the analysis of intact glycopeptides by proteomics technologies based on LC-MS analysis. A brief description of the main techniques used at the different steps of the analytical workflow is provided, giving special attention to the most recent developments. The topics discussed include the need for dedicated sample preparation for intact glycopeptide purification from complex biological matrices. This section covers the common approaches with a special description of new materials and innovative reversible chemical derivatization strategies, specifically devised for intact glycopeptide analysis or dual enrichment of glycosylation and other post-translational modifications. The approaches are described for the characterization of intact glycopeptide structures by LC-MS and data analysis by bioinformatics for spectra annotation. The last section covers the open challenges in the field of intact glycopeptide analysis. These challenges include the need of a detailed description of the glycopeptide isomerism, the issues with quantitative analysis, and the lack of analytical methods for the large-scale characterization of glycosylation types that remain poorly characterized, such as C-mannosylation and tyrosine O-glycosylation. This bird's-eye view article provides both a state of the art in the field of intact glycopeptide analysis and open challenges to prompt future research on the topic.
Collapse
Affiliation(s)
- Susy Piovesana
- Department of Chemistry, Sapienza Università Di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza Università Di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Andrea Cerrato
- Department of Chemistry, Sapienza Università Di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Aldo Laganà
- Department of Chemistry, Sapienza Università Di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Carmela Maria Montone
- Department of Chemistry, Sapienza Università Di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Anna Laura Capriotti
- Department of Chemistry, Sapienza Università Di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
7
|
Li S, Wei Y, Wang Y, Liang H. Advances in hydrophilic metal-organic frameworks for N-linked glycopeptide enrichment. Front Chem 2022; 10:1091243. [PMID: 36531319 PMCID: PMC9751774 DOI: 10.3389/fchem.2022.1091243] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 02/06/2024] Open
Abstract
The comprehensive profiling of glycoproteins is of great significance for the timely clinical diagnosis and therapy. However, inherent obstacles hamper their direct analysis from biological samples, and specific enrichment prior to analysis is indispensable. Among the various approaches for glycopeptide enrichment, hydrophilic interaction liquid chromatography (HILIC) has attracted special focus, especially for the development of novel hydrophilic materials, which is the key of HILIC. Metal-organic frameworks (MOFs) are a type of porous materials constructed from the self-assembly of metal and organic linkers. Advantages such as high surface area, flexible pore size, and easy modification render hydrophilic MOFs as ideal candidates for HILIC, which has inspired many studies over the past years. In this review, advances in hydrophilic MOFs for N-linked glycopeptide enrichment are summarized. According to the synthesis strategies, those materials are categorized into three classes, namely pristine MOFs, MOFs with chemical modifications, and MOFs-derived composite. In each categorization, the preparation and the function of different moieties are covered, as well as the enrichment performances of sensitivity, selectivity, and practical application. Finally, a summary and future perspective on the applications of hydrophilic MOFs for N-linked glycopeptide enrichment are briefly discussed. This review is expected to raise awareness of the properties of hydrophilic MOFs and offer some valuable information to further research in glycoproteomics.
Collapse
Affiliation(s)
| | | | | | - Haoran Liang
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, China
| |
Collapse
|
8
|
Hu E, Liang Y, Chen K, Li X, Zhou J. Nanofibrous Wound Healing Nanocomposite Based on Alginate Scaffold: In Vitro and In Vivo Study. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The combination of nanofibers with 3D scaffolds has shown promising results as the wound healing/dressing/care biomaterials. The present study aimed to fabricate and optimized alginate hydrogel composited by Lignin-derived carbon nanofibers (CNFs). The nanofibers were obtained from
electrospun Lignin nanofibers as the precursor through two steps heat treatments. The synthesized nanofibers blended with an alginate polymer solution with different concentrations (1, 5, and 10 wt.%) and cross-linked using CaCl2 through the physical cross-linking. The findings
illustrated that the prepared Lignin and CNFs have acceptable diameter. The composited Alginate hydrogels possessed a porous internal-structure with interconnected architecture. The fabricated hydrogel exhibited proper porosity and swelling behavior beneficial for wound healing application.
The In Vitro experiments revealed that the hydrogel were red blood cell (RBC)-compatible, cytocompatible, and induced proliferative effects on cells. The animal experiments indicated that the application of the hydrogel promoted the process of wound healing. These observations implied
that the prepared hydrogel nanocomposites exhibited promising properties and can be considered as wound healing nanobiomaterials.
Collapse
Affiliation(s)
- Enyi Hu
- Department of Hand and Foot Surgery, Xiaolan Hospital affiliated to Southern Medical University, Zhongshan City, 528400, China
| | - Yihui Liang
- Department of Hand and Foot Surgery, Xiaolan Hospital affiliated to Southern Medical University, Zhongshan City, 528400, China
| | - Kangcha Chen
- Department of Hand and Foot Surgery, Xiaolan Hospital affiliated to Southern Medical University, Zhongshan City, 528400, China
| | - Xian Li
- Department of Hand and Foot Surgery, Xiaolan Hospital affiliated to Southern Medical University, Zhongshan City, 528400, China
| | - Jianhui Zhou
- Department of Hand and Foot Surgery, Xiaolan Hospital affiliated to Southern Medical University, Zhongshan City, 528400, China
| |
Collapse
|
9
|
Zhao B, Wang Y, Ma J, Jia Q. Design of a hydrophilic mercaptosuccinic acid-functionalized β-cyclodextrin polymer via host–guest interaction: toward highly efficient glycopeptide enrichment. Analyst 2022; 147:4553-4561. [DOI: 10.1039/d2an01358d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel hydrophilic material (denoted as magCDP@Ada-MSA) was constructed through host–guest interaction between crosslinked β-cyclodextrin polymers and mercaptosuccinic acid derived adamantane, and was applied to specific glycopeptide enrichment.
Collapse
Affiliation(s)
- Binfen Zhao
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Yuxuan Wang
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Jiutong Ma
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|