1
|
Kashyap A, Kumari M, Singh A, Mukherjee K, Maity D. Current development of theragnostic nanoparticles for women's cancer treatment. Biomed Mater 2024; 19:042001. [PMID: 38471150 DOI: 10.1088/1748-605x/ad3311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
In the biomedical industry, nanoparticles (NPs-exclusively small particles with size ranging from 1-100 nanometres) are recently employed as powerful tools due to their huge potential in sophisticated and enhanced cancer theragnostic (i.e. therapeutics and diagnostics). Cancer is a life-threatening disease caused by carcinogenic agents and mutation in cells, leading to uncontrolled cell growth and harming the body's normal functioning while affecting several factors like low levels of reactive oxygen species, hyperactive antiapoptotic mRNA expression, reduced proapoptotic mRNA expression, damaged DNA repair, and so on. NPs are extensively used in early cancer diagnosis and are functionalized to target receptors overexpressing cancer cells for effective cancer treatment. This review focuses explicitly on how NPs alone and combined with imaging techniques and advanced treatment techniques have been researched against 'women's cancer' such as breast, ovarian, and cervical cancer which are substantially occurring in women. NPs, in combination with numerous imaging techniques (like PET, SPECT, MRI, etc) have been widely explored for cancer imaging and understanding tumor characteristics. Moreover, NPs in combination with various advanced cancer therapeutics (like magnetic hyperthermia, pH responsiveness, photothermal therapy, etc), have been stated to be more targeted and effective therapeutic strategies with negligible side effects. Furthermore, this review will further help to improve treatment outcomes and patient quality of life based on the theragnostic application-based studies of NPs in women's cancer treatment.
Collapse
Affiliation(s)
- Ananya Kashyap
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Madhubala Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Arnika Singh
- Department of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Koel Mukherjee
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Dipak Maity
- Integrated Nanosystems Development Institute, Indiana University Indianapolis, IN 46202, United States of America
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, IN 46202, United States of America
| |
Collapse
|
2
|
Hu JX, Ding SN. In Situ Synthesis of Highly Fluorescent, Phosphorus-Doping Carbon-Dot-Functionalized, Dendritic Silica Nanoparticles Applied for Multi-Component Lateral Flow Immunoassay. SENSORS (BASEL, SWITZERLAND) 2023; 24:19. [PMID: 38202881 PMCID: PMC10780618 DOI: 10.3390/s24010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
The sensitivity of fluorescent lateral flow immunoassay (LFIA) test strips is compromised by the low fluorescence intensity of the signaling molecules. In this study, we synthesized novel phosphorus-doped carbon-dot-based dendritic mesoporous silica nanoparticles (DMSNs-BCDs) with a quantum yield as high as 93.7% to break this bottleneck. Meanwhile, the in situ growth method increased the loading capacity of carbon dots on dendritic mesoporous silica, effectively enhancing the fluorescence intensity of the composite nanospheres. Applied DMSNs-BCDs in LFIA can not only semi-quantitatively detect a single component in a short time frame (procalcitonin (PCT), within 15 min) but also detect the dual components with a low limit of detection (LOD) (carbohydrate antigen 199 (CA199) LOD: 1 U/mL; alpha-fetoprotein (AFP) LOD: 0.01 ng/mL). And the LOD of PCT detection (0.01 ng/mL) is lower by 1.7 orders of magnitude compared to conventional colloidal gold strips. For CA199, the LOD is reduced by a factor of four compared to LFIA using gold nanoparticles as substrates, and for AFP, the LOD is lowered by two orders of magnitude compared to colloidal gold LFIA. Furthermore, the coefficients of variation (CV) for intra-assay and inter-assay measurements are both less than 11%.
Collapse
Affiliation(s)
| | - Shou-Nian Ding
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China;
| |
Collapse
|
3
|
Geka G, Kanioura A, Kochylas I, Likodimos V, Gardelis S, Dimitriou A, Papanikolaou N, Chatzantonaki K, Charvalos E, Economou A, Kakabakos S, Petrou P. Cancer Marker Immunosensing through Surface-Enhanced Photoluminescence on Nanostructured Silver Substrates. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3099. [PMID: 38132997 PMCID: PMC10745687 DOI: 10.3390/nano13243099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Nanostructured noble metal surfaces enhance the photoluminescence emitted by fluorescent molecules, permitting the development of highly sensitive fluorescence immunoassays. To this end, surfaces with silicon nanowires decorated with silver nanoparticles in the form of dendrites or aggregates were evaluated as substrates for the immunochemical detection of two ovarian cancer indicators, carbohydrate antigen 125 (CA125) and human epididymis protein 4 (HE4). The substrates were prepared by metal-enhanced chemical etching of silicon wafers to create, in one step, silicon nanowires and silver nanoparticles on top of them. For both analytes, non-competitive immunoassays were developed using pairs of highly specific monoclonal antibodies, one for analyte capture on the substrate and the other for detection. In order to facilitate the identification of the immunocomplexes through a reaction with streptavidin labeled with Rhodamine Red-X, the detection antibodies were biotinylated. An in-house-developed optical set-up was used for photoluminescence signal measurements after assay completion. The detection limits achieved were 2.5 U/mL and 3.12 pM for CA125 and HE4, respectively, with linear dynamic ranges extending up to 500 U/mL for CA125 and up to 500 pM for HE4, covering the concentration ranges of both healthy and ovarian cancer patients. Thus, the proposed method could be implemented for the early diagnosis and/or prognosis and monitoring of ovarian cancer.
Collapse
Affiliation(s)
- Georgia Geka
- Immunoassays/Immunosensors Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece; (G.G.); (A.K.); (S.K.)
- Department of Chemistry, National and Kapodistrian, University of Athens, University Campus, 15771 Athens, Greece;
| | - Anastasia Kanioura
- Immunoassays/Immunosensors Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece; (G.G.); (A.K.); (S.K.)
| | - Ioannis Kochylas
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, University Campus, 15784 Athens, Greece; (I.K.); (V.L.); (S.G.)
| | - Vlassis Likodimos
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, University Campus, 15784 Athens, Greece; (I.K.); (V.L.); (S.G.)
| | - Spiros Gardelis
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, University Campus, 15784 Athens, Greece; (I.K.); (V.L.); (S.G.)
| | - Anastasios Dimitriou
- Institute of Nanoscience & Nanotechnology, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece; (A.D.); (N.P.)
| | - Nikolaos Papanikolaou
- Institute of Nanoscience & Nanotechnology, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece; (A.D.); (N.P.)
| | - Kalliopi Chatzantonaki
- Molecular Diagnosis Department, INVITROLABS S.A., 12251 Peristeri, Greece; (K.C.); (E.C.)
| | - Ekaterina Charvalos
- Molecular Diagnosis Department, INVITROLABS S.A., 12251 Peristeri, Greece; (K.C.); (E.C.)
| | - Anastasios Economou
- Department of Chemistry, National and Kapodistrian, University of Athens, University Campus, 15771 Athens, Greece;
| | - Sotirios Kakabakos
- Immunoassays/Immunosensors Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece; (G.G.); (A.K.); (S.K.)
| | - Panagiota Petrou
- Immunoassays/Immunosensors Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece; (G.G.); (A.K.); (S.K.)
| |
Collapse
|