1
|
Zhang Q, Liu T, Yuan X, Zhao X, Zhou L. Aptasensors application for cow's milk allergens detection and early warning: Progress, challenge, and perspective. Talanta 2025; 281:126808. [PMID: 39260252 DOI: 10.1016/j.talanta.2024.126808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/30/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Cow's milk allergy (CMA) is considered one of the most prevalent food allergies and a public health concern. Modern medical research shows that the effective way to prevent allergic reactions is to prevent allergic patients from consuming allergenic substances. Therefore, the development of rapid and accurate detection technology for milk allergens detection and early warning is critical to safeguarding those with a cow milk allergy. As the oligonucleotide sequences with high specificity and selectivity, aptamers frequently assemble with transduction elements forming multifarious aptasensors for quantitative detection owing to their high-affinity binding to the target. Current aptasensors in the field of cow's milk allergen detection in recent years are explored in this review. This review takes a look back at a few common assays, including ELISA and PCR, before presenting a clear overview of the aptamer and threshold doses. It delves into a detailed discussion of the current aptamer-based detection techniques and related theories for milk allergen identification. Last but not least, we conclude with a discussion and outlook of the advancements made in allergen detection with aptamers. We sincerely hope that there will be more extensive applications for aptasensors in the future contributing to reducing the possibility of patients suffering from adverse reactions.
Collapse
Affiliation(s)
- Qingya Zhang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Ting Liu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Xiaomin Yuan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Xiongjie Zhao
- College of Chemistry and Biological Engineering, Hunan University of Science and Engineering, Yongzhou, Hunan, 425199, China.
| | - Liyi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.
| |
Collapse
|
2
|
Meliana C, Liu J, Show PL, Low SS. Biosensor in smart food traceability system for food safety and security. Bioengineered 2024; 15:2310908. [PMID: 38303521 PMCID: PMC10841032 DOI: 10.1080/21655979.2024.2310908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/23/2024] [Indexed: 02/03/2024] Open
Abstract
The burden of food contamination and food wastage has significantly contributed to the increased prevalence of foodborne disease and food insecurity all over the world. Due to this, there is an urgent need to develop a smarter food traceability system. Recent advancements in biosensors that are easy-to-use, rapid yet selective, sensitive, and cost-effective have shown great promise to meet the critical demand for onsite and immediate diagnosis and treatment of food safety and quality control (i.e. point-of-care technology). This review article focuses on the recent development of different biosensors for food safety and quality monitoring. In general, the application of biosensors in agriculture (i.e. pre-harvest stage) for early detection and routine control of plant infections or stress is discussed. Afterward, a more detailed advancement of biosensors in the past five years within the food supply chain (i.e. post-harvest stage) to detect different types of food contaminants and smart food packaging is highlighted. A section that discusses perspectives for the development of biosensors in the future is also mentioned.
Collapse
Affiliation(s)
- Catarina Meliana
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, Zhejiang Province, China
| | - Jingjing Liu
- College of Automation Engineering, Northeast Electric Power University, Jilin, Jilin Province, China
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, Abu Dhabi Municipality, United Arab Emirates
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Sze Shin Low
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, Zhejiang Province, China
| |
Collapse
|
3
|
Yang H, Zhu L, Wang X, Kang S, Li T, Chen K, Dong Y, Xu W. A label-free fluorescent magnetic dual-aptasensor based on aptamer allosteric regulation of β-lactoglobulin. Talanta 2024; 271:125664. [PMID: 38237281 DOI: 10.1016/j.talanta.2024.125664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 02/24/2024]
Abstract
We presented a label-free fluorescent biosensor based on magnetic dual-aptamer allosteric regulation of β-lactoglobulin (β-LG) detection. The bovine serum albumin (BSA) acted as the bridge to connect amino-modified magnetic beads and aptamer, which synthesized pyramid-type probes (MBAP) with high capture and reduced nonspecific adsorption. Moreover, the original aptamer was tailored and then designed as a bivalent aptamer to fabricate allosteric signal probes (ASP). The ASP can both specifically capture β-LG and output the fluorescence signal. The detection mechanism is as follows. The combination of the dual-aptamer and β-LG triggered the allosteric change, resulting in the release of SYBR Green (SG I) from the allosteric signal probe and change signals. This method exhibits a broad linear detection range from 10 ng/mL to 1 mg/mL and the limit of detection reaches as low as 8.06 ng/mL. This study provides a highly generalizable strategy for protein biomolecular detection via replacing different target aptamers.
Collapse
Affiliation(s)
- He Yang
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Longjiao Zhu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Xinxin Wang
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Shuaishuai Kang
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing, 100193, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Tianshun Li
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing, 100193, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Keren Chen
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Yulan Dong
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing, 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Wentao Xu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing, 100193, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
4
|
Kakkar S, Gupta P, Kumar N, Kant K. Progress in Fluorescence Biosensing and Food Safety towards Point-of-Detection (PoD) System. BIOSENSORS 2023; 13:249. [PMID: 36832016 PMCID: PMC9953818 DOI: 10.3390/bios13020249] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/26/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The detection of pathogens in food substances is of crucial concern for public health and for the safety of the natural environment. Nanomaterials, with their high sensitivity and selectivity have an edge over conventional organic dyes in fluorescent-based detection methods. Advances in microfluidic technology in biosensors have taken place to meet the user criteria of sensitive, inexpensive, user-friendly, and quick detection. In this review, we have summarized the use of fluorescence-based nanomaterials and the latest research approaches towards integrated biosensors, including microsystems containing fluorescence-based detection, various model systems with nano materials, DNA probes, and antibodies. Paper-based lateral-flow test strips and microchips as well as the most-used trapping components are also reviewed, and the possibility of their performance in portable devices evaluated. We also present a current market-available portable system which was developed for food screening and highlight the future direction for the development of fluorescence-based systems for on-site detection and stratification of common foodborne pathogens.
Collapse
Affiliation(s)
- Saloni Kakkar
- Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Chandigarh 160036, India
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, India
| | - Payal Gupta
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, India
| | - Navin Kumar
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, India
| | - Krishna Kant
- Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain
| |
Collapse
|