1
|
Almenhali AZ, Eissa S. Aptamer-based biosensors for the detection of neonicotinoid insecticides in environmental samples: A systematic review. Talanta 2024; 275:126190. [PMID: 38703483 DOI: 10.1016/j.talanta.2024.126190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/29/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Neonicotinoids, sometimes abbreviated as neonics, represent a class of neuro-active insecticides with chemical similarities to nicotine. Neonicotinoids are the most widely adopted group of insecticides globally since their discovery in the late 1980s. Their physiochemical properties surpass those of previously established insecticides, contributing to their popularity in various sectors such as agriculture and wood treatment. The environmental impact of neonicotinoids, often overlooked, underscores the urgency to develop tools for their detection and understanding of their behavior. Conventional methods for pesticide detection have limitations. Chromatographic techniques are sensitive but expensive, generate waste, and require complex sample preparation. Bioassays lack specificity and accuracy, making them suitable as preliminary tests in conjunction with instrumental methods. Aptamer-based biosensor is recognized as an advantageous tool for neonicotinoids detection due to its rapid response, user-friendly nature, cost-effectiveness, and suitability for on-site detection. This comprehensive review represents the inaugural in-depth analysis of advancements in aptamer-based biosensors targeting neonicotinoids such as imidacloprid, thiamethoxam, clothianidin, acetamiprid, thiacloprid, nitenpyram, and dinotefuran. Additionally, the review offers valuable insights into the critical challenges requiring prompt attention for the successful transition from research to practical field applications.
Collapse
Affiliation(s)
- Asma Zaid Almenhali
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Shimaa Eissa
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates.
| |
Collapse
|
2
|
Zhao Z, Yin H, Xiao J, Cui M, Huang R, Su R. Efficient Sequential Detection of Two Antibiotics Using a Fiber-Optic Surface Plasmon Resonance Sensor. SENSORS (BASEL, SWITZERLAND) 2024; 24:2126. [PMID: 38610339 PMCID: PMC11013968 DOI: 10.3390/s24072126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
Antibiotic residues have become a worldwide public safety issue. It is vital to detect multiple antibiotics simultaneously using sensors. A new and efficient method is proposed for the combined detection of two antibiotics (enrofloxacin (Enro) and ciprofloxacin (Cip)) in milk using surface plasmon resonance (SPR) sensors. Based on the principle of immunosuppression, two antibiotic antigens (for Enro and Cip) were immobilized on an optical fiber surface with conjugates of bovine serum albumin using dopamine (DA) polymerization. Each single antigen was bound to its corresponding antibody to derive standard curves for Enro and Cip. The fiber-optic sensor's sensitivity was 2900 nm/RIU. Detection limits were calculated to be 1.20 ng/mL for Enro and 0.81 ng/mL for Cip. The actual system's recovery rate was obtained by testing Enro and Cip in milk samples; enrofloxacin's and ciprofloxacin's mean recoveries from the milk samples were 96.46-120.46% and 96.74-126.9%, respectively. In addition, several different regeneration solutions were tested to analyze the two target analytes' regeneration ability; NaOH and Gly-HCl solutions were found to have the best regeneration ability.
Collapse
Affiliation(s)
- Ze Zhao
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Z.Z.)
| | - Huiting Yin
- Zhejiang Institute of Tianjin University, Ningbo 315201, China;
| | - Jingzhe Xiao
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Z.Z.)
| | - Mei Cui
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Z.Z.)
| | - Renliang Huang
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Z.Z.)
- Zhejiang Institute of Tianjin University, Ningbo 315201, China;
| |
Collapse
|
3
|
Xu Z, Jin X, Li Y, Zhang M, Yin W, Yang Y, Jia W, Xie D. Conductive imprinted polymeric interfacially modified electrochemical sensors based on covalently bonded layer-by-layer assembly of Gr/Au with flower-like morphology for sensitive detection of 2,4,6-TCP. RSC Adv 2024; 14:3834-3840. [PMID: 38274160 PMCID: PMC10809438 DOI: 10.1039/d3ra06668a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024] Open
Abstract
Polymeric membrane sensors based on molecular imprinted polymers (MIPs) have been attractive analytical tools for detecting organic species. However, the MIPs in electrochemical sensors developed so far are usually prepared by in situ polymerization of pre-polymers and non-covalent adsorption on the surface of the working electrode. Meanwhile, the MIPs in the electrochemical sensors developed are typically made of a non-conductive polymer film. This results in a relatively low current due to the lack of electron transfer. Additionally, the smoothness of the traditional electrochemical substrate results in a low specific surface area, which reduces the sensitivity of the electrochemical sensor. Here, we describe a novel electrochemical sensor with a conductive interface and MIPs modification. The electrochemical sensor was modified by covalent coupled layer by layer self-assembly with the imprinted polymer film. The incorporation of these two conductive functional materials improves the conductivity of the electrodes and provides interface support materials to obtain high specific surface area. By using 2,4,6-trichlorophenol as the model, the sensitivity of the developed conductive sensor was greatly improved compared to that of the traditional MIPs sensor. We believe that the proposed MIPs-based sensing strategy provides a general and convenient method for making sensitive and selective electrochemical sensors.
Collapse
Affiliation(s)
- Ziang Xu
- College of Chemistry and Environmental Science, Hebei University Baoding 071002 China
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment Guangzhou 510655 China
| | - Xiangying Jin
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment Guangzhou 510655 China
| | - Yuqing Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment Guangzhou 510655 China
| | - Manwen Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment Guangzhou 510655 China
| | - Wenhua Yin
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment Guangzhou 510655 China
| | - Yanyan Yang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment Guangzhou 510655 China
| | - Wenchao Jia
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment Guangzhou 510655 China
| | - Danping Xie
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment Guangzhou 510655 China
| |
Collapse
|
4
|
Wu S, Mao J, Zhang Y, Wang S, Huo M, Guo H. Sensitive electrochemical detection of enrofloxacin in eggs based on carboxylated multi-walled carbon nanotubes-reduced graphene oxide nanocomposites: Molecularlyimprintedrecognition versus direct electrocatalytic oxidation. Food Chem 2023; 413:135579. [PMID: 36750005 DOI: 10.1016/j.foodchem.2023.135579] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/05/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
A sensitive electrochemical method for detecting enrofloxacin was proposed using carboxylated multi-walled carbon nanotubes-reduced graphene oxide (MWCNT-COOH-RGO) nanocomposites. The MWCNT-COOH-RGO nanocomposites were firstly electrodeposited on a bare electrode, followed by electropolymerization of molecularly imprinted polymers. Enrofloxacin was determined by the mechanisms of direct electrocatalytic oxidation and molecularly imprinted recognition, respectively. Under the optimized conditions, a response range of 5.0×10-7 M to 5.5×10-5 M and limit of detection (LOD) of 2.3×10-7 M were obtained by direct electrocatalytic oxidation of enrofloxacin using chronoamperometry. By contrast, the response range of 1.0×10-10 M to 5.0×10-5 M and LOD of 2.5×10-11 M were achieved by molecularly imprinted recognition of enrofloxacin using square-wave voltammetry. Moreover, the proposed method exhibited good repeatability, stability and selectivity, and could be used for enrofloxacin detection in egg samples with satisfactory results.
Collapse
Affiliation(s)
- Suozhu Wu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China.
| | - Jie Mao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Yiqin Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Shurong Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Meijun Huo
- Department of Planning Cooperation, Shanxi Agricultural University, Taigu 030801, China
| | - Hongyuan Guo
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
5
|
Vu OT, Nguyen QH, Nguy Phan T, Luong TT, Eersels K, Wagner P, Truong LTN. Highly Sensitive Molecularly Imprinted Polymer-Based Electrochemical Sensors Enhanced by Gold Nanoparticles for Norfloxacin Detection in Aquaculture Water. ACS OMEGA 2023; 8:2887-2896. [PMID: 36713701 PMCID: PMC9878621 DOI: 10.1021/acsomega.2c04414] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/26/2022] [Indexed: 06/18/2023]
Abstract
The overuse of antibiotics in aquaculture and pharmaceuticals and their subsequent leaking into the environment have been demonstrated to be a potential route for creating antibiotic resistance in bacteria. In order to assess the impact of this problem and take regulatory measures, it is necessary to develop tools that allow for the detection of antibiotics in environmental samples in a routine, low-cost manner. In this study, we integrated gold nanoparticles (AuNPs) into a molecularly imprinted polymer (MIP) membrane to fabricate a new sensor for the detection of norfloxacin in pharmaceuticals and aquaculture samples. The receptor layers were characterized by scanning electron microscopy, electrochemical impedance spectroscopy, and Raman spectroscopy. The results of these studies demonstrate that the addition of AuNPs to the polymer network enhanced the sensor sensitivity by at least a factor of two. The MIP-AuNPs sensor has a low detection limit (0.15 ng/mL, S/N = 3) with a wide linear range and very high sensitivity. The selectivity of the fabricated sensor was measured in the sample containing other antibiotics (like chloramphenicol, ciprofloxacin, and levofloxacin). Rapid and precise norfloxacin detection in pharmaceutical compounds and fishpond water samples indicates that the fabricated sensor has the potential to be used for routine screening of aquacultures and pharmaceutical processes.
Collapse
Affiliation(s)
- Oanh Thi Vu
- Vietnam-Korea
Institute of Science and Technology, Hoa Lac Hi-Tech Park, Research and Development Zone, Hanoi100000, Vietnam
| | - Quoc Hao Nguyen
- Department
of Chemical Engineering (Integrated Engineering), Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do17104, Republic of Korea
| | - Tin Nguy Phan
- Vietnam-Korea
Institute of Science and Technology, Hoa Lac Hi-Tech Park, Research and Development Zone, Hanoi100000, Vietnam
| | - Thanh ThuyThi Luong
- National
Institute of Occupational and Environmental Health, 57 Le Quy Don,
Hai Ba Trung District, Hanoi3800 016, Vietnam
| | - Kasper Eersels
- Sensor
Engineering Department, Faculty of Science and Engineering, Maastricht University, Maastricht6200 MD, The Netherlands
| | - Patrick Wagner
- Department
of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200 D, LeuvenB-3001, Belgium
| | - Lien Thi Ngoc Truong
- Vietnam-Korea
Institute of Science and Technology, Hoa Lac Hi-Tech Park, Research and Development Zone, Hanoi100000, Vietnam
- School of
Engineering Physics, Hanoi University of
Science and Technology, No. 1 Dai Co Viet Road, Hai Ba Trung District, Hanoi100000, Vietnam
| |
Collapse
|
6
|
Reliable and Rapid Detection and Quantification of Enrofloxacin Using a Ratiometric SERS Aptasensor. Molecules 2022; 27:molecules27248764. [PMID: 36557895 PMCID: PMC9784490 DOI: 10.3390/molecules27248764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Reliable detection and quantification of antibiotic residues in food using surface-enhanced Raman spectroscopy remain challenging, since the intensities of SERS signals are vulnerable to matrix and experimental factors. In this work, a ratiometric SERS aptasensor using 6-Carboxyl-X-Rhodamine (ROX)-labeled aptamers and 4-mercaptobenzonitrile (4-MBN)-functionalized gold nanoparticles (Au NPs) as SERS probes was established for the reliable and rapid detection and quantification of enrofloxacin. In the presence of enrofloxacin, the conformational transform of aptamers took place, and the distance between ROX and Au NP increased, which resulted in a decrease in the SERS signal intensity of ROX. Meanwhile, the intensity of the SERS signal of 4-MBN was used as an internal standard. Reliable determination of enrofloxacin was realized using the ratio of the SERS signal intensities of ROX to 4-MBN. Under optimal conditions, the developed ratiometric SERS aptasensor provided a wide linear range from 5 nM to 1 µM, with a correlation coefficient (R2) of 0.98 and a limit of detection (LOD) of 0.12 nM (0.043 ppb). In addition, the developed ratiometric SERS aptasensor was successfully applied for the determination of enrofloxacin in fish and chicken meat, with recovery values of 93.6-112.0%. Therefore, the established ratiometric SERS aptasensor is sensitive, reliable, time-efficient, and has the potential to be applied in the on-site detection of enrofloxacin in complex matrices.
Collapse
|
7
|
Han S, Sun R, Teng F, Wang Y, Chu H, Zong W, Chen Y, Sun Z. A highly selective molecularly imprinted electrochemical sensor with anti-interference based on GO/ZIF-67/AgNPs for the detection of p-cresol in a water environment. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3079-3086. [PMID: 35916293 DOI: 10.1039/d2ay00911k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
p-Cresol is a harmful phenolic substance that can cause serious effects on human health even at a low concentration in water. Therefore, the detection of p-cresol in a water environment is particularly important. In this paper, a novel zeolite imidazolate framework-67 (ZIF-67) material with regular morphology was prepared on the surface of graphene oxide doped with silver nanoparticles. The composite was modified on the glassy carbon electrode surface to increase the specific surface area, accelerate the electron transfer rate, enhance the current response and improve the performance of electrochemical sensors. Furthermore, a layer of p-cresol-molecularly imprinted polymer was prepared on the surface of the modified electrode by electropolymerization for the selective, rapid and sensitive detection of p-cresol, which greatly improved the specific recognition of p-cresol. Under optimal conditions, the prepared sensor had a good linear range of 1.0 × 10-10 M to 1.0 × 10-5 M with a detection limit as low as 5.4 × 10-11 M, and it presented excellent reproducibility, stability and selectivity. Moreover, the sensor was successfully applied for the detection of trace p-cresol in a real water environment, providing a reliable assay for sensitive, rapid and selective detection of p-cresol in complex samples.
Collapse
Affiliation(s)
- Shuang Han
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Ruonan Sun
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Fu Teng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Yuan Wang
- Heilongjiang Province Qiqihar Ecological Environment Monitoring Center, Qiqihar 161005, China
| | - Hongtao Chu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Wei Zong
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Yao Chen
- Heilongjiang Province Qiqihar Ecological Environment Monitoring Center, Qiqihar 161005, China
| | - Zhonghui Sun
- Heilongjiang Province Qiqihar Ecological Environment Monitoring Center, Qiqihar 161005, China
| |
Collapse
|