1
|
Li H, Xie X, Liu X, Wu P, He J, Lin F, Shi L, Huang Y. Ultrasensitive Biosensors Detecting m 6A in Blood: Achieving Early Screening and Typing of Tumors. ACS Sens 2024. [PMID: 39470316 DOI: 10.1021/acssensors.4c01875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
N6-methyladenosine (m6A) modification is one of the most widespread RNA modifications in eukaryotes and is involved in cancer development and progression by regulating oncogene expression. Herein, a reticulated rolling circle amplification (RCA) cascade reaction was used to construct a novel electrochemical biosensor for ultrasensitive detection of m6A, employing ferrocene-tyramine (Fc-Tyr) molecules as electroactive probes. In this strategy, the RCA cascade reaction not only amplifies specific circular DNA in the designed template to reduce the binding with similar nucleic acid sequences but also generates a long ssDNA through multiple repetitions to capture a large number of electrochemical signal probes and achieve the amplification of electrochemical biosensing signals. The developed biosensor demonstrated high selectivity and sensitivity toward m6A in the range of 0.5 pM-150 nM, with a detection limit of 14.07 fM. Meanwhile, total RNA extracted from cell samples was analyzed for m6A expression levels using the developed biosensor and a commercial colorimetric immunoassay, the biosensor and immunoassay showed consistent results. In addition, m6A levels in clinical serum samples were assessed using the developed electrochemical biosensor, which showed that m6A expression was much lower in healthy individuals than in cancer patients, therefore the biosensor is promising for cancer typing. This study provides a new method for rapid and convenient tumor marker detection in clinical practice, as well as a new idea for sensitive detection of other biomolecules.
Collapse
Affiliation(s)
- Haiping Li
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Xixiang Xie
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jian He
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Faquan Lin
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Liang Shi
- Department of Laboratory Medicine, the Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China
| | - Yong Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
2
|
Wang M, Li Y, Zhang C, Li G, Zou L. A signal-on photoelectrochemical aptasensor based on ferrocene labeled triple helix DNA molecular switch for detection of antibiotic amoxicillin. Food Chem 2024; 441:138333. [PMID: 38185050 DOI: 10.1016/j.foodchem.2023.138333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024]
Abstract
A sensitive signal-on photoelectrochemical aptasensor for antibiotic determination was constructed based on the energy level matching between ferrocene and CuInS2. P-type CuInS2 microflower was complexed with reduced graphene oxide (CuInS2/rGO) to get photocathode current with good photoelectric conversion efficiency and stability. Then, hairpin DNA (HP) was covalently bonded to the electrode surface. A triple helix DNA (THMS) was used as a molecular switch. After the specific recognition between target and THMS in homogeneous solution, ferrocene labeled probe (Fc-T2) was released. Finally, Fc-T2 was captured by the HP, which leaded the obvious increase of photocurrent for the energy level matching between ferrocene and CuInS2. The increase of the photocurrent signal was proportional to the concentration of target amoxicillin (AMOX), the linear range was 100 fM-100 nM with detection limit of 19.57 fM. Meanwhile, the method has been successfully applied for milk and lake water samples analysis with satisfactory results.
Collapse
Affiliation(s)
- Mengyan Wang
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ying Li
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, PR China
| | - Chi Zhang
- Department of Orthopedics The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, PR China
| | - Gaiping Li
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, PR China
| | - Lina Zou
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
3
|
Fan B, Wang Q, Wang S, Gao Y, Liang Y, Pan J, Fu X, Li L, Meng W. Label-Free Ratiometric Homogeneous Electrochemical Strategy Based on Exonuclease III-Aided Signal Amplification for Facile and Rapid Detection of miR-378. Int J Anal Chem 2024; 2024:8368987. [PMID: 38807657 PMCID: PMC11132827 DOI: 10.1155/2024/8368987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/24/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024] Open
Abstract
MiR-378 is abnormally expressed in various cancers, such as hepatocellular carcinoma, renal cell carcinoma, and nonsmall cell lung cancer. Here, we developed a label- and immobilization-free ratiometric homogeneous electrochemical strategy based on exonuclease III (Exo III) for the facile and rapid determination of miR-378. Two 3'-protruding hairpin DNA probes (HPs) are designed in this strategy. Doxorubicin (DOX) and potassium ferrocyanide (Fe2+) were used as label-free probes to produce a response signal (IDOX) and a reference signal (IFe2+) in the solution phase. When no target was present in the solution, the HP was stable, most of the DOX was intercalated in the stem of the HP, and the diffusion rate of DOX was significantly reduced, resulting in reduced electrochemical signal response. When miR-378 was present, double-cycle signal amplification triggered by Exo III cleavage was initiated, ultimately disrupting the hairpin structures of HP1 and HP2 and releasing a large amount of DOX into the solution, yielding a stronger electrochemical signal, which was low to 50 pM. This detection possesses excellent selectivity, demonstrating high application potential in biological systems, and offers simple and low-cost electrochemical detection for miR-378.
Collapse
Affiliation(s)
- Bingyuan Fan
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Qian Wang
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
- Nanpi No. 1 Middle School, Cangzhou 061599, China
| | - Shan Wang
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Yahui Gao
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Yan Liang
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Jinru Pan
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Xinrui Fu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Li Li
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Wei Meng
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
4
|
Liu Y, Zhou Y, Xu W, Li J, Wang S, Shen X, Wen X, Liu L. Aptamer-based kinetically controlled DNA reactions coupled with metal-organic framework nanoprobes for sensitive detection of SARS-CoV-2 spike protein. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6583-6589. [PMID: 38014562 DOI: 10.1039/d3ay01585h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Since the outbreak in 2019, COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become the deadliest infectious disease worldwide for people of all ages, from children to older adults. As a main structural protein of SARS-CoV-2, spike protein is reported to play a key role in the entry of the virus into host cells and is considered as an effective antigenic marker for COVID-19 diagnosis. Herein, we develop a new aptamer-based fluorescence method for SARS-CoV-2 spike protein detection based on using kinetically controlled DNA reactions and metal-organic framework nanoprobes. Specifically, the binding of SARS-CoV-2 spike protein to its aptamer is designed to precisely control the kinetics of a DNA displacement reaction, leading to the release of free signaling probes. By reasonable integration of magnetic enrichment and exonuclease-fuelled recycling, the released probes efficiently disrupt the interaction within metal-organic framework nanoprobes, thereby generating a remarkable fluorescent response. Experimental results show that the method not only exhibits a wide linear range and a low detection limit of 7.8 fg mL-1 for SARS-CoV-2 spike protein detection but also demonstrates desirable specificity and utility in complex samples. Therefore, the method may provide a valuable tool for the detection of SARS-CoV-2 spike protein, and has bright prospects in the rapid diagnosis of COVID-19, which is of great significance for guiding rational treatment during a pandemic of respiratory infectious diseases and reducing the occurrence of severe disease in children.
Collapse
Affiliation(s)
- Yan Liu
- Department of Pediatrics, Chengdu Second People's Hospital, Chengdu 610021, Sichuan, China.
| | - Yuanlin Zhou
- Department of Pediatrics, Chengdu Second People's Hospital, Chengdu 610021, Sichuan, China.
| | - Wanting Xu
- Department of Pediatrics, Chengdu Second People's Hospital, Chengdu 610021, Sichuan, China.
| | - Jiarong Li
- College of Clinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Shuning Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaojia Shen
- Department of Pediatrics, Chengdu Second People's Hospital, Chengdu 610021, Sichuan, China.
| | - Xiaobin Wen
- Department of Pediatrics, Chengdu Second People's Hospital, Chengdu 610021, Sichuan, China.
| | - Li Liu
- Department of Pediatrics, Chengdu Second People's Hospital, Chengdu 610021, Sichuan, China.
| |
Collapse
|
5
|
Yu X, Bai S, Wang L. In situ reduction of gold nanoparticles-decorated MXenes-based electrochemical sensing platform for KRAS gene detection. Front Bioeng Biotechnol 2023; 11:1176046. [PMID: 37008032 PMCID: PMC10063977 DOI: 10.3389/fbioe.2023.1176046] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
In this work, gold nanoparticles@Ti3C2 MXenes nanocomposites with excellent properties were combined with toehold-mediated DNA strand displacement reaction to construct an electrochemical circulating tumor DNA biosensor. The gold nanoparticles were synthesized in situ on the surface of Ti3C2 MXenes as a reducing and stabilizing agent. The good electrical conductivity of the gold nanoparticles@Ti3C2 MXenes composite and the nucleic acid amplification strategy of enzyme-free toehold-mediated DNA strand displacement reaction can be used to efficiently and specifically detect the non-small cell cancer biomarker circulating tumor DNA KRAS gene. The biosensor has a linear detection range of 10 fM −10 nM and a detection limit of 0.38 fM, and also efficiently distinguishes single base mismatched DNA sequences. The biosensor has been successfully used for the sensitive detection of KRAS gene G12D, which has excellent potential for clinical analysis and provides a new idea for the preparation of novel MXenes-based two-dimensional composites and their application in electrochemical DNA biosensors.
Collapse
|