1
|
Sun H, Xia P, Shao H, Zhang R, Lu C, Xu S, Wang C. Heating-free synthesis of red emissive carbon dots through separated processes of polymerization and carbonization. J Colloid Interface Sci 2023; 646:932-939. [PMID: 37235938 DOI: 10.1016/j.jcis.2023.05.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Polymerization and carbonization are believed as two basic processes for the bottom-up synthesis of carbon dots (CDs). Since these two processes usually occur simultaneously due to the high reaction temperature and fast reaction rate, it is still a challenge to separate and control these two processes. In the present work, we reported a new room temperature method, which achieved the separated and controlled polymerization and carbonization processes. The polymerization process is realized by dissolving o-phenylenediamine (OPD) in ethanol at room temperature, and finally obtained polymer dots (PDs) without any lattice with a sphere size of 29.6 nm. The carbonization process begins in a manual way by adding concentrated sulfuric acid. After carbonization, CDs (noted as CPDs in this work) with a size of 3.6 nm and a clear lattice can be obtained. Importantly, the separated polymerization and carbonization make us possible to adjust the composition or interactions of intermediate products during the synthesis process. As a prototype, we added acetic acid (AA) additives into OPD precursors during the polymerization stage. Due to the crosslink enhanced emission (CEE) effect via hydrogen bonds which are produced by the amide groups from AA reaction products with H in the -NH3+ or aromatic ring, the resulted CPDs show improved PLQY from an initial 6.87% (without AA) to 16.47%. The current work realized the separated and controllable polymerization and carbonization processes, opening up the door for tuning the composition and interactions of intermediate products before carbonization.
Collapse
Affiliation(s)
- Hongcan Sun
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Pengfei Xia
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Haibao Shao
- School of Electronics & Information, Nantong University, Nantong 226019, People's Republic of China
| | - Rong Zhang
- Department of Obstetrics and Gynecology, the Second Hospital of Nanjing, Nanjing University of Chinese Medicine, People's Republic of China
| | - Changgui Lu
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Shuhong Xu
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China.
| | - Chunlei Wang
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China.
| |
Collapse
|
2
|
Xin N, Gao D, Su B, Zhou T, Zhu Y, Wu C, Wei D, Sun J, Fan H. Orange-Emissive Carbon Dots with High Photostability for Mitochondrial Dynamics Tracking in Living Cells. ACS Sens 2023; 8:1161-1172. [PMID: 36795996 DOI: 10.1021/acssensors.2c02451] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Mitochondria play significant roles in maintaining a stable internal environment for cell metabolism. Hence, real-time monitoring of the dynamics of mitochondria is essential for further understanding mitochondria-related diseases. Fluorescent probes provide powerful tools for visualizing dynamic processes. However, most mitochondria-targeted probes are derived from organic molecules with poor photostability, making long-term dynamic monitoring challenging. Herein, we design a novel mitochondria-targeted probe based on carbon dots with high performance for long-term tracking. Considering that the targeting ability of CDs is related to surface functional groups, which are generally determined by the reaction precursors, we successfully constructed mitochondria-targeted O-CDs with emission at 565 nm through solvothermal treatment of m-diethylaminophenol. The O-CDs are bright with a high quantum yield of 12.61%, high mitochondria-targeting ability, and good stability. The O-CDs possess a high quantum yield (12.61%), specific mitochondria-targeting ability, and outstanding optical stability. Owing to the abundant hydroxyl and ammonium cations on the surface, O-CDs showed obvious accumulation in mitochondria with a high colocalization coefficient of up to 0.90 and remained steady even after fixation. Besides, O-CDs showed outstanding compatibility and photostability under various interruptions or long-time irradiation. Therefore, O-CDs are preferable for the long-term tracking of dynamic mitochondrial behavior in live cells. We first observed the mitochondrial fission and fusion behaviors in HeLa cells, and then, the size, morphology, and distribution of mitochondria in physiological or pathological conditions were clearly recorded. More importantly, we observed different dynamics interactions between mitochondria and lipid droplets during the apoptosis and mitophagy processes. This study provides a potential tool for exploring interactions between mitochondria and other organelles, further promoting the research on mitochondria-related diseases.
Collapse
Affiliation(s)
- Nini Xin
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Dong Gao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Borui Su
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Ting Zhou
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yuda Zhu
- Laboratory of Ethnopharmacology, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chengheng Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
- Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610065, Sichuan, China
| | - Dan Wei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Jing Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| |
Collapse
|