1
|
Zhou S, Wan J, Zou J, Zhang Y, He H, Li W, Hu J, Nie J, Yuan Y, Zhang Y. A dual-signal optical sensing platform of CDs-MnO 2 NS composites for facile detection of ascorbic acid based on a combination of Tyndall effect scattering and fluorescence. RSC Adv 2024; 14:17491-17497. [PMID: 38818364 PMCID: PMC11137496 DOI: 10.1039/d4ra02340d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
A dual-signal optical sensing platform was successfully developed for the determination of ascorbic acid (AA) based on blue fluorescent carbon dots (CDs) and manganese dioxide nanosheets (MnO2 NSs) with strong Tyndall effect (TE) scattering and fluorescence quenching capabilities. In this nanosystem, CDs-MnO2 NS composites were employed as probes to evaluate the AA concentration. Owing to the strong reduction, the presence of the target AA could reduce the MnO2 NSs to Mn2+ and induce the degradation of the MnO2 NSs, resulting in a significant decrease in the TE scattering intensity of the MnO2 NSs and the fluorescence recovery of the CDs. Therefore, a novel optical sensor based on TE scattering and fluorescence dual detectors was developed for the sensitive determination of AA. Under optimized conditions, the limits of detection (LODs) of the two modes were 113 and 3 nM, respectively. Furthermore, the dual-signal optical sensing platform was successfully applied for the detection of AA in human serum.
Collapse
Affiliation(s)
- ShuJing Zhou
- College of Chemistry and Bioengineering, Guilin University of Technology Guilin 541004 P. R. China +86 773 5896839 +86 773 5896453
| | - Jing Wan
- College of Chemistry and Bioengineering, Guilin University of Technology Guilin 541004 P. R. China +86 773 5896839 +86 773 5896453
| | - Jianmei Zou
- College of Chemistry and Bioengineering, Guilin University of Technology Guilin 541004 P. R. China +86 773 5896839 +86 773 5896453
| | - Yulan Zhang
- College of Chemistry and Bioengineering, Guilin University of Technology Guilin 541004 P. R. China +86 773 5896839 +86 773 5896453
| | - Huijun He
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology Guilin 541004 China
| | - Wei Li
- College of Chemistry and Bioengineering, Guilin University of Technology Guilin 541004 P. R. China +86 773 5896839 +86 773 5896453
| | - Jiale Hu
- College of Chemistry and Bioengineering, Guilin University of Technology Guilin 541004 P. R. China +86 773 5896839 +86 773 5896453
| | - Jinfang Nie
- College of Chemistry and Bioengineering, Guilin University of Technology Guilin 541004 P. R. China +86 773 5896839 +86 773 5896453
| | - Yali Yuan
- College of Chemistry and Bioengineering, Guilin University of Technology Guilin 541004 P. R. China +86 773 5896839 +86 773 5896453
| | - Yun Zhang
- College of Chemistry and Bioengineering, Guilin University of Technology Guilin 541004 P. R. China +86 773 5896839 +86 773 5896453
| |
Collapse
|
2
|
Xu D, Tu Q, San X, Zhu A, Li X. CoO/Co-graphene quantum dots as an oxidative mimetic nanozyme for the colorimetric detection of L-cysteine. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2044-2050. [PMID: 38501322 DOI: 10.1039/d4ay00086b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The preparation of cobalt-based nanozymes with high oxidase-like activity still needs more efforts. In this paper, we report the synthesis of a CoO/Co-tryptophan-functional graphene quantum dot hybrid (CoO/Co-Try-GQD). Firstly, cobalt ions coordinate with the indole nitrogen on Try-GQD to form a complex, followed by thermal reduction and oxidation. The resulting hybrid presents a three-dimensional network structure, and CoO/Co nanoparticles are uniformly dispersed on the graphene sheet with an average size of 10 ± 0.24 nm. This unique structure improved the oxidase-like activity of the hybrid, enabling it to catalyze the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to rapidly produce deep blue ox-TMB with a strong absorbance at 652 nm (A652). A colorimetric method was developed for the highly sensitive determination of L-cysteine (L-cys) based on the inhibition of the hybrid's oxidase-like activity and low A652 caused by the binding of L-cys with Co atoms on CoO/Co via the Co-S bond. The A652 linearly decreased with increasing L-cys concentration in the range of 0.05-2 μM, and the detection limit was 0.032 μM. Further, the established method has been successfully applied to the determination of L-cys in milk.
Collapse
Affiliation(s)
- Dan Xu
- Department of Pharmacy, Nanjing University of Chinese Medicine Hanlin College, Taizhou, 225300, China.
| | - Qingbo Tu
- Department of Pharmacy, Nanjing University of Chinese Medicine Hanlin College, Taizhou, 225300, China.
| | - Xin San
- Department of Pharmacy, Nanjing University of Chinese Medicine Hanlin College, Taizhou, 225300, China.
| | - Anhong Zhu
- Department of Pharmacy, Nanjing University of Chinese Medicine Hanlin College, Taizhou, 225300, China.
| | - Xinru Li
- Department of Pharmacy, Nanjing University of Chinese Medicine Hanlin College, Taizhou, 225300, China.
| |
Collapse
|
3
|
Li J, Cai X, Jiang P, Wang H, Zhang S, Sun T, Chen C, Fan K. Co-based Nanozymatic Profiling: Advances Spanning Chemistry, Biomedical, and Environmental Sciences. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307337. [PMID: 37724878 DOI: 10.1002/adma.202307337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/12/2023] [Indexed: 09/21/2023]
Abstract
Nanozymes, next-generation enzyme-mimicking nanomaterials, have entered an era of rational design; among them, Co-based nanozymes have emerged as captivating players over times. Co-based nanozymes have been developed and have garnered significant attention over the past five years. Their extraordinary properties, including regulatable enzymatic activity, stability, and multifunctionality stemming from magnetic properties, photothermal conversion effects, cavitation effects, and relaxation efficiency, have made Co-based nanozymes a rising star. This review presents the first comprehensive profiling of the Co-based nanozymes in the chemistry, biology, and environmental sciences. The review begins by scrutinizing the various synthetic methods employed for Co-based nanozyme fabrication, such as template and sol-gel methods, highlighting their distinctive merits from a chemical standpoint. Furthermore, a detailed exploration of their wide-ranging applications in biosensing and biomedical therapeutics, as well as their contributions to environmental monitoring and remediation is provided. Notably, drawing inspiration from state-of-the-art techniques such as omics, a comprehensive analysis of Co-based nanozymes is undertaken, employing analogous statistical methodologies to provide valuable guidance. To conclude, a comprehensive outlook on the challenges and prospects for Co-based nanozymes is presented, spanning from microscopic physicochemical mechanisms to macroscopic clinical translational applications.
Collapse
Affiliation(s)
- Jingqi Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Xinda Cai
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Peng Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Huayuan Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Shiwei Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Chunxia Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
4
|
Wang XJ, Long Y, Wei CW, Gao SQ, Lin YW. Peroxidase activity of a Cu-Fe bimetallic hydrogel and applications for colorimetric detection of ascorbic acid. Phys Chem Chem Phys 2024; 26:1077-1085. [PMID: 38098362 DOI: 10.1039/d3cp05403a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
A Cu-Fe bimetallic hydrogel (2-QF-CuFe-G) was constructed through a simple method. The 2-QF-CuFe-G metallohydrogel possesses excellent peroxidase-like activity to catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2. The catalytic mechanism was confirmed by the addition of •OH radical scavenger isopropyl alcohol (IPA), tert-butyl alcohol (TBA) and ˙OH trapping agent terephthalic acid (TA). Remarkably, the resultant blue ox-TMB system can be used to selectively and sensitively detect ascorbic acid (AA) with an LOD of 0.93 μM in the range of 4-36 μM through the colorimetric method. Moreover, the assay based on the 2-QF-CuFe-G metallohydrogel can be successfully applied to detect AA in fresh fruits.
Collapse
Affiliation(s)
- Xiao-Juan Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Yan Long
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Chuan-Wan Wei
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Shu-Qin Gao
- Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
- Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China
| |
Collapse
|
5
|
Li JX, Wang JL, Chai TQ, Yang FQ. One-pot synthesized copper-imidazole-2-carboxaldehyde complex material with oxidase-like activity for the colorimetric detection of glutathione and ascorbic acid. Heliyon 2023; 9:e22099. [PMID: 38027898 PMCID: PMC10663933 DOI: 10.1016/j.heliyon.2023.e22099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
Due to the copper (Cu) active sites, its complexes with oxidase-like activity have superior catalytic properties, which can catalyze a series of specific substrates like 3,3',5,5'-tetramethylbenzidine (TMB), producing colorimetric reactions for the detection of different reducing small-molecule compounds. Attribute to the competitive coordination effects between water molecules and central Cu ions, most of the Cu complexes can hardly be used in the pure aqueous reaction system. In this study, a Cu-based material (Cu-imidazole-2-carboxaldehyde, Cu-ICA) was prepared using copper ions and ICA through a one-step process in the water solution. After the morphology of the material being characterized, the mimetic enzyme behavior of the Cu-ICA was demonstrated through the TMB oxidation. Compared to the other reported oxidase-like mimics, Cu-ICA has better aqueous stability and oxidase-like activity, and shows a higher vmax. Furthermore, basing on the oxidase-like activity of Cu-ICA, a colorimetric method was developed for the ascorbic acid and glutathione detections with linear ranges of 0.5-5 μM and 0.5-4 μM, and limit of detection of 0.1304 μM and 0.097 μM, respectively. Owing to its excellent aqueous stability and oxidase-like activity, Cu-ICA has bright application prospects in the analysis of reducing small-molecule compounds.
Collapse
Affiliation(s)
- Jia-Xin Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, PR China
| | - Jia-Li Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, PR China
| | - Tong-Qing Chai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, PR China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, PR China
| |
Collapse
|