1
|
Peng G, Huang Y, Xie G, Tang J. Exploring Copper's role in stroke: progress and treatment approaches. Front Pharmacol 2024; 15:1409317. [PMID: 39391696 PMCID: PMC11464477 DOI: 10.3389/fphar.2024.1409317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Copper is an important mineral, and moderate copper is required to maintain physiological processes in nervous system including cerebral ischemia/reperfusion (I/R) injury. Over the past few decades, copper induced cell death, named cuprotosis, has attracted increasing attention. Several lines of evidence have confirmed cuprotosis exerts pivotal role in diverse of pathological processes, such as cancer, neurodegenerative diseases, and I/R injury. Therefore, an in-depth understanding of the interaction mechanism between copper-mediated cell death and I/R injury may reveal the significant alterations about cellular copper-mediated homeostasis in physiological and pathophysiological conditions, as well as therapeutic strategies deciphering copper-induced cell death in cerebral I/R injury.
Collapse
Affiliation(s)
- Gang Peng
- The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, Hunan, China
| | - Yongpan Huang
- School of Medicine, Changsha Social Work College, Changsha, Hunan, China
| | - Guangdi Xie
- Department of Neurology, Huitong People’s Hospital, Huitong, Hunan, China
| | - Jiayu Tang
- The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, Hunan, China
| |
Collapse
|
2
|
Li N, Jiang X, Yu H, Sun D. A Liquid Metal-Based Temperature-Responsive Low-Toxic Smart Coating for Anti-Biofouling Applications in Marine Engineering. SMALL METHODS 2024:e2401028. [PMID: 39246115 DOI: 10.1002/smtd.202401028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/18/2024] [Indexed: 09/10/2024]
Abstract
Titanium alloys have been widely used in marine engineering fields. However, because of high biocompatibility, they are vulnerable to biofouling. In this work, based on the micro-arc oxidation technology and spontaneous galvanic replacement reaction, a temperature-responsive low-toxic smart coating consisting of liquid metal particles is designed to control the release of Ga3+, Cu2+, and Cu1+ ions in different temperatures. This technology can ensure the full release of active ingredients within the target temperature range, intelligently maintaining the excellent anti-biofouling performance, while saving active ingredients. After being immersed in culture media with Sulfate-Reducing Bacteria (SRB) for 14 days at 10, 20, and 30 °C, at the optimal activity temperature of 30 °C for SRB, the best sample releases the highest amounts of Ga3+, Cu2+, and Cu1+ ions, demonstrating a 99.9% bactericidal rate. When the temperature decreases to 10 °C, the activity level of SRB is very low, and the smart coating can also reduce the released ions correspondingly, still with a 97.3% bactericidal rate. The remarkable anti-biofouling performance is attributed to the physical damage and lethal ions interaction. Furthermore, the best sample exhibits good corrosion resistance. This work presents a design route for smart anti-biofouling coatings for temperature-responsive.
Collapse
Affiliation(s)
- Ningbo Li
- School of Materials Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xuzhou Jiang
- School of Materials Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
- Nanotechnology Research Center, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hongying Yu
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, China
| | - Dongbai Sun
- School of Materials Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
3
|
Luo X, Sun HY, Lu SY, Zhou Y, Xu ZQ, Zhong N, Lu YS, Wang SJ, Shi HB, Tian W. Fe-doped Cu-based bimetallic metal-organic frameworks as nanoscale microwave sensitizers for enhancing microwave thermal and dynamic therapy for hepatocellular carcinoma. NANOSCALE 2024; 16:11069-11080. [PMID: 38745454 DOI: 10.1039/d4nr00654b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Microwave ablation (MWA) is recognized as a novel treatment modality that can kill tumor cells by heating the ions and polar molecules in these cells through high-speed rotation and friction. However, the size and location of the tumor affect the effective ablation range of microwave hyperthermia, resulting in residual tumor tissue and a high recurrence rate. Due to their tunable porous structure and high specific surface area, metal-organic frameworks (MOFs) can serve as microwave sensitizers, promoting microwave energy conversion owing to ion collisions in the porous structure of the MOFs. Moreover, iron-based compounds are known to possess peroxidase-like catalytic activity. Therefore, Fe-doped Cu bimetallic MOFs (FCMs) were prepared through a hydrothermal process. These FCM nanoparticles not only increased the efficiency of microwave-thermal energy conversion as microwave sensitizers but also promoted the generation of reactive oxygen species (ROS) by consuming glutathione (GSH) and promoted the Fenton reaction to enhance microwave dynamic therapy (MDT). The in vitro and in vivo results showed that the combination of MWA and MDT treatment effectively destroyed tumor tissues via microwave irradiation without inducing significant side effects on normal tissues. This study provides a new approach for the combined application of MOFs and microwave ablation, demonstrating excellent potential for future applications.
Collapse
Affiliation(s)
- Xi Luo
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Han-Yao Sun
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Shang-Yu Lu
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yan Zhou
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Zi-Qing Xu
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Nan Zhong
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yi-Shi Lu
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Shou-Ju Wang
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Hai-Bin Shi
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Wei Tian
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Liu M, Zhang H, Bao Y, Li G, Yan R, Wu X, Wang Z, Jin Y. Immunogenic Cell Death Induction and Oxygenation by Multifunctional Hollow Silica/Copper-Doped Carbon Dots. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18534-18550. [PMID: 38574189 DOI: 10.1021/acsami.4c00853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
The metastasis and recurrence of cancer are related to immunosuppression and hypoxia in the tumor microenvironment. Activating immune activity and improving the hypoxic environment face essential challenges. This paper reports on a multifunctional nanomaterial, HSCCMBC, that induces immunogenic cell death through powerful photodynamic therapy/chemodynamic therapy synergistic antitumor effects. The tumor microenvironment changed from the immunosuppressive type to immune type, activated the immune activity of the system, decomposed hydrogen peroxide to generate oxygen based on Fenton-like reaction, and effectively increased the level of intracellular O2 with the assistance of 3-bromopyruvate, a cell respiratory inhibitor. The structure and composition of HSCCMBC were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, infrared spectroscopy, etc. Oxygen probe RDPP was used to investigate the oxygen level inside and outside the cell, and hydroxyl radical probe tetramethylbenzidine was used to investigate the Fenton-like reaction ability. The immunofluorescence method investigated the expression of various immune markers and hypoxia-inducing factors in vitro and in vivo after treatment. In vitro and in vivo experiments indicate that HSCCMBC is an excellent antitumor agent and is expected to be a candidate drug for antitumor immunotherapy.
Collapse
Affiliation(s)
- Mingyang Liu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Hui Zhang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, Harbin, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
- College of Public Health, Mudanjiang Medical University, Mudanjiang 157009, China
| | - Yujun Bao
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, Harbin, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Guanghao Li
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Rui Yan
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Xiaodan Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Zhiqiang Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Yingxue Jin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, Harbin, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
5
|
Zhou Y, Shu G, Luo Y, Wang F, Jing X, Pan J, Sun SK. Achieving Complete Tumor Clearance: A Minimalist Manganese Hydrogel for Magnetic Resonance Imaging-Guided Synergetic Microwave Ablation and Chemodynamic Therapy. Adv Healthc Mater 2024; 13:e2303268. [PMID: 38140916 DOI: 10.1002/adhm.202303268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/29/2023] [Indexed: 12/24/2023]
Abstract
The combination of microwave ablation (MWA) and chemodynamic therapy (CDT) presents a promising strategy for complete eradication of residual tumor after MWA. However, it remains challenging and urgent to develop a facile, biocompatible, and imaging-guided platform for the achievement of this goal. Herein, a minimalist manganese hydrogel (ALG-Mn hydrogel) is proposed for synergistic MWA and CDT to completely eradicate tumor in vivo. The ALG-Mn hydrogel is prepared using a simple mixing method and exhibits excellent syringeability, remarkable microwave sensitivity, and potent Fenton-like activity. By assisting in MWA procedures, the ALG-Mn hydrogel enables both elimination of primary tumor mass through enhanced MWA efficacy and eradication of potential residual tumor tissues via robust CDT. This approach achieves complete tumor clearance without additional drug loading. Furthermore, the paramagnetic Mn2+ component allows real-time dynamic visualization of the ALG-Mn hydrogel at the tumor site via magnetic resonance imaging. To the best of knowledge, the proposed ALG-Mn hydrogel represents the minimalist biocompatible platform for imaging-guided synergistic MWA and CDT toward achieving complete tumor clearance.
Collapse
Affiliation(s)
- Yan Zhou
- School of Medicine, Nankai University, Tianjin, 300071, China
- Department of Ultrasound, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Gang Shu
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Ying Luo
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Fengmei Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
- Department of Ultrasound, Tianjin Third Central Hospital, Tianjin, 300170, China
- Tianjin Key Laboratory of Molecular Diagnosis and Treatment of Liver Cancer, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Xiang Jing
- Department of Ultrasound, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
| |
Collapse
|
6
|
Zhao Z, Li H, Gao X. Microwave Encounters Ionic Liquid: Synergistic Mechanism, Synthesis and Emerging Applications. Chem Rev 2024; 124:2651-2698. [PMID: 38157216 DOI: 10.1021/acs.chemrev.3c00794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Progress in microwave (MW) energy application technology has stimulated remarkable advances in manufacturing and high-quality applications of ionic liquids (ILs) that are generally used as novel media in chemical engineering. This Review focuses on an emerging technology via the combination of MW energy and the usage of ILs, termed microwave-assisted ionic liquid (MAIL) technology. In comparison to conventional routes that rely on heat transfer through media, the contactless and unique MW heating exploits the electromagnetic wave-ions interactions to deliver energy to IL molecules, accelerating the process of material synthesis, catalytic reactions, and so on. In addition to the inherent advantages of ILs, including outstanding solubility, and well-tuned thermophysical properties, MAIL technology has exhibited great potential in process intensification to meet the requirement of efficient, economic chemical production. Here we start with an introduction to principles of MW heating, highlighting fundamental mechanisms of MW induced process intensification based on ILs. Next, the synergies of MW energy and ILs employed in materials synthesis, as well as their merits, are documented. The emerging applications of MAIL technologies are summarized in the next sections, involving tumor therapy, organic catalysis, separations, and bioconversions. Finally, the current challenges and future opportunities of this emerging technology are discussed.
Collapse
Affiliation(s)
- Zhenyu Zhao
- School of Chemical Engineering and Technology, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Hong Li
- School of Chemical Engineering and Technology, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Xin Gao
- School of Chemical Engineering and Technology, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
7
|
Wang Y, Ren X, Zheng Y, Tan L, Li B, Fu C, Wu Q, Chen Z, Ren J, Yang D, Yu S, Meng X. Boosting Microwave Thermo-Dynamic Cancer Therapy of TiMOF via COF-Coating. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304440. [PMID: 37544921 DOI: 10.1002/smll.202304440] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Indexed: 08/08/2023]
Abstract
Microwave (MW) dynamic therapy (MDT) can efficiently eliminate tumor residue resulting from MW thermal therapy. However, MDT is currently in its infancy, and luck of effective MDT sensiters severely limits its clinical therapeutic effect. Herein, based on TiMOF (TM), a high-efficiency MW sensitizer is designed for MW thermo-dynamic therapy. TM can generate heat and cytotoxic reacyive oxygen species (ROS) under MW irradiation and has the potential to be used as an MW sensitizer, while the suboptimal MW dynamic sensitization effect of TM limits its application. Inorder to improve the MW dynamic sensitization performance, a covalent organic framework (COF) with good stability and a large conjugate system is used to cover TM, which is conductive to electron and energy transfer, thus increasing the ROS generation rate and prolonging the ROS lifetime. In addition, loading Ni NPs endow nanomaterials with magnetic resonance imaging capabilities. Therefore, this work develops an MW sensitizer based on TM for the first time, and the mechanism of COF coating to enhance the MW dynamic sensitization of TM is preliminarily explored, which provides a new idea for the further development of MW sensitizer with great potential.
Collapse
Affiliation(s)
- Yuxin Wang
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiangling Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yingjuan Zheng
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, P. R. China
| | - Longfei Tan
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bingyan Li
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, P. R. China
| | - Changhui Fu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qiong Wu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zengzhen Chen
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jun Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Daoke Yang
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, P. R. China
| | - Shiping Yu
- Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, P. R. China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
8
|
Hu Y, Xing Y, Yue H, Chen T, Diao Y, Wei W, Zhang S. Ionic liquids revolutionizing biomedicine: recent advances and emerging opportunities. Chem Soc Rev 2023; 52:7262-7293. [PMID: 37751298 DOI: 10.1039/d3cs00510k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Ionic liquids (ILs), due to their inherent structural tunability, outstanding miscibility behavior, and excellent electrochemical properties, have attracted significant research attention in the biomedical field. As the application of ILs in biomedicine is a rapidly emerging field, there is still a need for systematic analyses and summaries to further advance their development. This review presents a comprehensive survey on the utilization of ILs in the biomedical field. It specifically emphasizes the diverse structures and properties of ILs with their relevance in various biomedical applications. Subsequently, we summarize the mechanisms of ILs as potential drug candidates, exploring their effects on various organisms ranging from cell membranes to organelles, proteins, and nucleic acids. Furthermore, the application of ILs as extractants and catalysts in pharmaceutical engineering is introduced. In addition, we thoroughly review and analyze the applications of ILs in disease diagnosis and delivery systems. By offering an extensive analysis of recent research, our objective is to inspire new ideas and pathways for the design of innovative biomedical technologies based on ILs.
Collapse
Affiliation(s)
- Yanhui Hu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yuyuan Xing
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Yue
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Chen
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yanyan Diao
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wei
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Yu X, Lyu M, Ou X, Liu W, Yang X, Ma X, Zhang T, Wang L, Zhang YC, Chen S, Kwok RTK, Zheng Z, Cui HL, Cai L, Zhang P, Tang BZ. AIEgens/Mitochondria Nanohybrids as Bioactive Microwave Sensitizers for Non-Thermal Microwave Cancer Therapy. Adv Healthc Mater 2023; 12:e2202907. [PMID: 36802128 DOI: 10.1002/adhm.202202907] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/17/2023] [Indexed: 02/20/2023]
Abstract
Aggregation-induced emission luminogens (AIEgens) are widely used as photosensitizers for image-guided photodynamic therapy (PDT). Due to the limited penetration depth of light in biological tissues, the treatments of deep-seated tumors by visible-light-sensitized aggregation-induced emission (AIE) photosensitizers are severely hampered. Microwave dynamic therapy attracts much attention because microwave irradiation can penetrate very deep tissues and sensitize the photosensitizers to generate reactive oxygen species (ROS). In this work, a mitochondrial-targeting AIEgen (DCPy) is integrated with living mitochondria to form a bioactive AIE nanohybrid. This nanohybrid can not only generate ROS under microwave irradiation to induce apoptosis of deep-seated cancer cells but also reprogram the metabolism pathway of cancer cells through retrieving oxidative phosphorylation (OXPHOS) instead of glycolysis to enhance the efficiency of microwave dynamic therapy. This work demonstrates an effective strategy to integrate synthetic AIEgens and natural living organelles, which would inspire more researchers to develop advanced bioactive nanohybrids for cancer synergistic therapy.
Collapse
Affiliation(s)
- Xinghua Yu
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of nanomedicine and nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Lab for Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.,Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, P. R. China
| | - Ming Lyu
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of nanomedicine and nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Lab for Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Xupei Ou
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of nanomedicine and nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Lab for Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Wenquan Liu
- Center for Opto-Electronic Engineering and Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Xing Yang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of nanomedicine and nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Lab for Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoxi Ma
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of nanomedicine and nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Lab for Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tianfu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Longnan Wang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of nanomedicine and nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Lab for Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Ying-Chuan Zhang
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, P. R. China
| | - Sijie Chen
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institute, Hong Kong, 999077, P. R. China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Zheng Zheng
- Center for Opto-Electronic Engineering and Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Hong-Liang Cui
- Center for Opto-Electronic Engineering and Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of nanomedicine and nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Lab for Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of nanomedicine and nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Lab for Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| |
Collapse
|
10
|
Chen S, Zhao R, Sun X, Wang H, Li L, Liu J. Toxicity and Biocompatibility of Liquid Metals. Adv Healthc Mater 2023; 12:e2201924. [PMID: 36314401 DOI: 10.1002/adhm.202201924] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/15/2022] [Indexed: 01/27/2023]
Abstract
Recently, room-temperature liquid metals have attracted increasing attention from researchers owing to their excellent material properties. Systematic interpretation of the potential toxicity issues involved is essential for a wide range of applications, especially in the biomedical and healthcare fields. However, even with the exponential growth of related studies, investigation of the toxicological impact and possible hazards of liquid metals to organisms is still in its infancy. This review aims to provide a comprehensive summary of the current frontier of knowledge on liquid metal toxicology and biocompatibility in different environments. Based on recent studies, this review focuses on Ga and Bi-based in different states. It is necessary to evaluate their toxicity considering the rapid increase in research and utilization of such liquid metal composites. Finally, existing challenges are discussed and suggestions are provided for further investigation of liquid metal toxicology to clarify the toxicological mechanisms and strategies are provided to avoid adverse effects. In addition to resolving the doubts of public concern about the toxicity of liquid metals, this review is expected to promote the healthy and sustainable development of liquid metal-based materials and their use in diverse areas, especially those related to health care.
Collapse
Affiliation(s)
- Sen Chen
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Ruiqi Zhao
- Beijing Key Lab of Cryo-Biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xuyang Sun
- School of Medicine Engineering, Beijing University of Aeronautics and Astronautics, Beijing, 100191, China
| | - Hongzhang Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Lei Li
- Beijing Key Lab of Cryo-Biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jing Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China.,Beijing Key Lab of Cryo-Biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|